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Chapter 2

@) [, =22.85, [xy], =9.1396, |x, |, =481,
() |2, =18.68, |p|, =7.1944, |xp[  =3.48.

1, n=>0, =)L n<0, _ n—
;,L[n]—{o’ w0, Hence, p[-n 1]—{0’ n>o0. Thus, x(n]=pln]+ul-n—1].

(a) Consider the sequence defined by x[n] = fS[k]. If n <0, then £ =0 is not included

k=—o0
in the sum and hence, x[n] = 0 for n < 0. On the other hand, for n >0, £ =0 is included
in the sum, and as a result, x[#] =1 for n>0. Therefore,

xin] = f&u={3 " =l
k=—o0 ’ ’

n=0, n>1,

) 1 . TS
(b) Since “[n]_{(), n<0. it follows that pu[n 1]—{0’ nel Hence,

=t -11={g =0
Recall u[n]—u[n—1]=98[n]. Hence,

x[n] =98[n]+308[n—1]-208[n—2]+406[n—3]

= (uln]—pln — 1D+ 3(uln — 11— pln —2]) = 2(uln - 2] — pln - 3]) + 4(uln — 3] — pln —4])
=u[n]+2u[n—1]-5u[n—2]+6u[n—3]—-4u[n—4].

=9[n].

(@) cnl=x[-n+2]=1{2 (T) -3 -2 1 5 -4},

(b) din]l=y[-n-3]1={-2 7 8 0 -1 -3 6 0 (T)},

) enl=w[-n]={5 -2 0 -1 2 2 3 0 2},

(d) uln]=x{n]+yn-2]={-4 5 1 —Tz 3 -3 10 8 7 -2},
(e) v[n]=x[n]-win+4]1={0 15 2 —T4 3.0 -4 0,

(f) s[n]l=yln]l-wn+4]={-3 4 —TS 0 0 10 2 -2},

(9) rln]=3.5y[n]=1{21 —1T0.5 35 0 28 245 -7

(@) x[n]=-40[n+3]+58[n+2]+9d[n+1]-208[n]—-30[n—1]+28[n—-3],

yln] = 608[n +1]—38[n]—08[n — 1]+ 83[n — 3]+ 78[n —4]—23[n — 5],
wln]=30[n—-2]+208[n—3]+28[n—4]-98[n—5]—-208[n—"7]+5d8[n—8],

(b) Recall 3[n]=pu[n]—u[n—1]. Hence,
x[n] =—-4(un+3]—puln+2]) + S(u[n + 2] —uln +11) + (u[n + 1] — u[n])
=2(u[n] = puln—1]) = 3(uln —1] = puln = 2]) + 2(u[n - 3] - pln - 4])
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=—-Ap[n+3]+9u[n +2]-4uln +1]-3u[n] —u[n — 1]+ 3u[n - 2]+ 2p[n - 3] - 2u[n — 4],

2.7 (a)

x[ri—l] R x[n-2]

x[n] T’ z! >z 1 l
Yh[O] hi2]
»(+ yIn]

!
Zh[u
")

From the above figure it follows that y[n] = A[0]x[n]+ A[1]x[n — 1]+ A[2]x[n —2].

(b)

From the above figure we get wn] = A[O](x[n]+ By x[n —1]+ B> x[n—2]) and
yln]=wln]+Biowln —1]+Brrwln —2]. Making use of the first equation in the second
we arrive at
yln] = h[0)(x[n]+ By1x[n =11+ Boryx[n —2])

+ B12A0](x[n — 1]+ By x[n — 2]+ By x[n —3])

+ B A[0](x[n = 2]+ By x[n = 3]+ B x[n—4])

= WO1(x[n1+ (Byy +Bro)xln—11+ (Bay +B1aBry +Bo)xln—2]
+(B12Ba1 +BoaBi)xln =31+ By xln —41).
(c) Figure P2.1(c) is a cascade of a first-order section and a second-order section. The

input-output relation remains unchanged if the ordering of the two sections is
interchanged as shown below.

yln]
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The second-order section can be redrawn as shown below without changing its input-
output relation.

wln] 0.6 uln] yln+1]

x[n] —»

yln]

The second-order section can be seen to be cascade of two sections. Interchanging their

ordering we finally arrive at the structure shown below:

0.6

sin] uln] yln+1]

-0.8
yln]

-0.5

Analyzing the above structure we arrive at
s[n]=0.6x[n]+0.3x[n—-1]+0.2x[n-2],
uln]=s[n]-0.8u[n—-1]-0.5u[n - 2],
yin+1]=u[n]+0.4y[n].
From u[n] = y[n+1]—0.4y[n]. Substituting this in the second equation we get after some
algebra y[n+1]=s[n]—0.4y[n]-0.18y[n—1]+0.8y[n —2]. Making use of the first
equation in this equation we finally arrive at the desired input-output relation
yn]+0.4y[n—-1]+0.18y[n —2]-0.2y[n—3] =0.6x[n— 1]+ 0.3x[n — 2]+ 0.2x[n - 3].

(d) Figure P2.19(d) is a parallel connection of a first-order section and a second-order
section. The second-order section can be redrawn as a cascade of two sections as
indicated below:

yolnl
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Interchanging the order of the two sections we arrive at an equivalent structure shown

below:
0.3

,D_,

qln]

x[n] —»| 71

-0.5

Analyzing the above structure we get
qln]=0.3x[n—-1]+0.2x[n—2],

yalnl=g[n]—0.8y,[n—1]1-0.5y,[n—2].
Substituting the first equation in the second we have

vo[n]+0.8y,[n—1]4+0.5y,[n—2] = 0.3x[n —1]+0.2x[n - 2].

Analyzing the first-order section of Figure P2.1(d) given below
[n] — uln-1], 0.6

un
x[n] —»{%—» b4 yilnl
0.4 b

~N

we get
uln] = x[n]+0.4uln-1],
yi[n]=0.6u[n—1].
Solving the above two equations we have
vi[n]=0.4y,[n—-1]=0.6x[n—-1].
The output y[n] of the structure of Figure P2.19(d) is given by
yinl =y [n]+y,[nl.
From Eq. (2-2) we get 0.8y;[n—1]-0.32y,[n—2]=0.48 x[n —2] and

(2-1)

(2-2)

(2-3)

0.5y;[n—2]-0.2y;[n—3]=0.3x[n—3]. Adding the last two equations to Eq. (2-2) we

arrive at y;[n]+0.4y;[n—1]+0.18y;[n—-2]-0.2 y;[n—3]
=0.6x[n—1]+0.48 x[n—2]+0.3x[n —3].
Similarly, from Eq. (2-1) we get

(2-4)

—0.4y,[n—1]-0.32y,[n—-2]-0.2y,[n—3] =—-0.12x[n — 2] - 0.08x[n — 3]. Adding this

equation to Eq. (2-1) we arrive at
yo[n]+0.4y,[n—1]+0.18y,[n—-2]-0.2 y,[n—3]
=0.3x[n—1]+0.08x[n —2]-0.08 x[1n —3].

(2-5)

Adding Egs. (2-4) and (2-5), and making use of Eq. (2-3) we finally arrive at the input-

output relation of Figure P2.1(d) as:

y[n]+0.4y[n—1]+0.18y[n—2]-0.2y[n—-3]=0.9x[n—1]+ 0.56 x[n — 2]+ 0.22 x[n — 3].
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28 (a) xf[n]={1-j4 -2-j5 3+j2 —-7-j3 —1-j},
T
xfl-nl={-1-j -7-j3 3+;2 -2-j5 1-j4}. Therefore
T

xl,cs[n]:;(xi‘[n]+xf[—n]):{j1.5 ~45+)j 3 -45-) - j13)

X1 aln] = ;(xi‘[n] —x} [—n])z (1+2.5 2.5+j4 - sz —2.5+j4 —1+ 2.5},

(b) x5[n]= eI 3, Hence, x3[n]= e /™3 and thus, x3[-n] = eI 3 x5 [n].

:ej27m/3

Therefore, x; .s[n]= ;(xi [n]+ x5 [—n]) = x5[n], and

X9 cqlnl= ;(xi [n]—x5 [—n])z 0.

(©) x3ln]=je/™/5 Hence, x§[n]=—je/™'3 and thus,

x§[-nl=—je /™/5 = _x;[n]. Therefore, x3 o,[n]= ;(X§ (] + % [_n]): 0. and
L o« « L
X3,ca [n] = 2(x3 [n]— X3 [—n]): X3[n] =je jnn/5.

29 (a) xnl={-4 5 1 —Tz ~3 0 2}. Hence, {-n]={2 0 -3 —Tz 15 —4).

Therefore, x,,[n] :%(x[n]+x[—n]):%{—2 5 =2 _T4 -2 5 -2}

={-1 25 -1 —Tz 1 25 -1

and xod[n]=%(x[n]—x[—n])=%{—6 540 -4 -5 6
=(-3 25 2 0 -2 -25 3,
(b) y[n]={0 0 O O 6 _T3 -1 0 8 7 -2}. Hence,

yV-n]l={-2 7 8 0 -1 _T3 6 0 0 0 O}

Therefore, yev[n]=%(y[n]+y[—n])={—1 35 4 0 25 _T3 25 0 4 35 -1}
and yod[n]:%(y[n]—y[—n])z{l -35 -4 0 35 g -35 0 4 35 -1}
() win]={0 0 0 0 0 0 0 O 2 0 3 22 -1 0 -2 5}. Hence,
wl-n]={5 -2 0 -1 2 2 3 0 g 0 00O O 0O 0 O 0}. Therefore

Wey ] = (wln] + w-n])
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=25 -1 0 -05 1 1 15 O 2 0 15 11 -05 0 -1 25} and

1
Woalnl= E(W[”] —w[-n])
={-251 0 05 -1 -1 -15 O gr) 01511 -05 0 -1 25}

2.10 (a) xq[n]=pln+2]. Hence, x;[-n]=p[-n+2]. Therefore,

1 1/2, n>3,
X evln] =5(p[n+2]+u[—n+2]) =<1 -2<n<2, and
1/2, —-3<n,
1 {1/2, n>3,
X1,0qln]= 5(u[n+2]—u[—n+2]) =< 0, —-2<n<L2,
-1/2, -3<n.

(b) x,[n]=a"u[n-3]. Hence, x,[-n]=oa "u[-n-3]. Therefore,

%Otn, n=3,
XZ,ev[”]:;(“n“[”—3]+0t_”u[—n—3])= 1 0, -2<n<2, and
E(x_”, -3<n,
%Otn, n=>3,
Xz,od["l]=;(Ot”u[n—3]—oc_”u[—n—3]): 10, -2<n<2,
—Eoc_", -3<n.

(€) x3[n]=naun]. Hence, x3[-n]=-na "uf-n]. Therefore,
¥3,evlnl = ;(”O‘n“[”] + (—n)a_nu[—n])= %|n| o and

x3,0q1n] = ;(na”u[n] ~(mya " pn])= L.

(d) xy4[n] — ol Hence, x4[-n] — ol = gl = x4[n]. Therefore,

X4 epln] = %(x4[n] +x4[-n]) = %(x4[n] +x4[n]) = x4[n] = oc‘n‘ and

X401 = 5 (Fa[n]=x4l=n]) = Crgln] = x4 [n)) = 0.

211 x,,[n] =%(x[n]+x[—n]). Thus, x,,[-n] =%(x[—n]+x[n])=xev[n]. Hence, x,,[n] is

an even sequence. Likewise, x, [n]= %(x[n] — x[-n]). Thus,
Xpq[—n]= l(x[—n] —x[n])= —x,4[n]. Hence, x,,[n] is an odd sequence.

2
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2.12

(a) g[l’l] = xev [n]xev[n]° ThUS, g[—n] = xev[_n]xev[_n] = xev [n]xev [l’l] = g[l’l] Hence’

g[n] is an even sequence.

(b) uln] = x,,[nlx,4[n]. Thus, u[-n]= x,,[-nlx,4[-n] = xev[n](— xod[n]) = —u[n].
Hence, u[n] is an odd sequence.

(c) vinl=x,4[nlx,4lnl. Thus, v[-n]= x, 4[-nlx,4[-n] = (— xod[n])(— xod[n])
= x,4[nlx,4[n]=v[n]. Hence, v[n] is an even sequence.

2.13

2.14

2.15

(a) Since x[n] iscausal, x[n]=0,n<0. Also, x[-n]=0, n>0. Now,

Xpp[n] = %(x[n] +x[-n]). Hence, x,,[0]=—(x[0]+ x[0])= x[0] and

1
T2
| 2x,,[n], n>0,
Xpplnl= Ex[n],n > (. Combining the two equations we get x[n] =1 x,,[n], n=0,
0, n<0.

Likewise, x,q[n] = (x{n] - [-nl). Hence, xoq[0]= ) (x{0]- x{0])=0 and
2x,,[n], n>0,

Xpgln]l= %x[n],n > (0. Combining the two equations we get x[n] = { ) <0

(b) Since y[n] iscausal, y[n]=0,n<0. Also, y[-n]=0,n>0. Let
ylnl=y,.[nl+ jy;,[n], where y, [n] and y;, [n] are real causal sequences.

NOW, y.,[1] = ;(y[n] - y*[—n]) Hence, y,,[0] = ;(y[O]— y*[O]): 7vim[0] and

Veglnl = %y[n],n > 0. Since y,,[0] is not known, y[n] cannot be fully recovered from
Yealn].
Likewise, y,[n] = ;(y[n] 4 y*[—n]) Hence, y,,[0] = ;(y[O] 4 y*[O]): v,.0] and
Yeslnl = %y[n],n > 0. Since y,;,,[0] is not known, y[r] cannot be fully recovered from
Yeslnl.

Since x[n] is causal, x[n] =0, n <0. From the solution of Problem 2.13 we have

2x,,[n], n>0, |2cos(w,n), n>0,
x[n]=1 x,,[n], n=0,= 1 n =0, =2cos(mw,n)u[n]—o[n].

0, n <0, 0, n <0,

(@) {x[n]}={Aa"} where A and o are complex numbers with |a| <1. Since for

n<o,

a|" can become arbitrarily large, {x[n]} is not a bounded sequence.
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2.16

2.17

(b) y[n]=Aa"u[n]= {Ag‘n’ n i 8 where A and o are complex numbers with
b n b

o <1. Here, |of” <1,n>0. Hence |y[n] <|A| for all values of n. Hence, {y[n]} isa
bounded sequence.

(c) {A[n]}=CPB" uln] where C and B are complex numbers with |B| >1. Since for

n>0,

[3|” can become arbitrarily large, {h[n]} is not a bounded sequence.

(d) {g[n]} = 4cos(w,n). Since |g[n]| <4 for all values of n,{g[n]} is a bounded

sequence.
1
- > .
(e) vIn]= (1 an’ 2L since %<1 for n>1 and %zl for n=1,
0, n<0. n n

all values of n. Thus {v[n]} is a bounded sequence.

v[n]| <1 for

(_1)n+1 (_1)n+1

n

x[n]=

un—11. Now 3, |x[n]|=§

n=—o0 n=1

= § l:oo. Hence {x[n]} is
n=1 "N

not absolutely summable.

(@) x;[n]=a""u[n—-1]. Now OEO: |x2[n]|: %o: o’

n=— n=

o < 1. Hence, {x{[n]} is absolutely summable.

- §|a|" = [ <, since
n=1 1—|O(|

[

(b) xp[n]=a"u[n-1]. Now § |x2[n]|: Ozo: no < o0, since

n=-—w n=1

2 oo
= > njo| =———
n=1 (1-|a])?

|oc|2 < 1. Hence, {x,[n]} is absolutely summable.

(c) x3[n]=n2a”u[n—1]. Now %O: |x3[n]|: OZOj n’o”

n=-—00 n=

_ |oc|+22|ot|2 +32|0L|3 +42|a|4 F...

- Xn’faf’
n=1

= (| +|0t|2 +|0L|3 +|0L|4 +...)+3(|0c|2 +|a|3 +|0t|4 +...)+5(|0t|3 +|0c|4 +|OL|5 +..)
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2.18

2.19

LA O A

1—|0t| L=fo]  1-lo] 1-jo]

:;[z(zn Dle" ] [zz nlaf" - z| " j I T
L=Jod o= L=|of =l a—[ap?  1-Jof

_ let+a)

+7(|(x|4+|(x|5+|(x|6+...): .

<oo. Hence, {x3[n]} is absolutely summable.

(1o’
1 © 1 1
(@) x,[n]= —u[n] Now Z |xa[n]|— —|= % —=——=2<w Hence,
2" n=-w 012" n=02" 1—5
{x,[n]} is absolutely summable.
(b) xpln]= ; p[n]. Now z |xb n]|_ = ;
(n+D(n +2) n=—o0 o|(n+1(n+2)

o0
= Z( P 1 j:(l_lj+[l_lj+(l_lj+(l_lj+m:1<OO' Hence,
n—o\n+1l n+2 2 2 3 3 4 4 5

{xp[n]} is absolutely summable.

(a) A sequence x[n] is absolutely summable if § |x[n]| < oo. By Schwartz inequality

n=—oo
we have 0203 |x[n]|2£[ %Oj |X[n]|j( 0203 |x[n]|J<oo. Hence, an absolutely summable
Nn=—0o0 n=—o0 n=—o0

sequence is square summable and has thus finite energy.

Now consider the sequence x[n]= lu[n —1]. The convergence of an infinite series can
n

be shown via the integral test. Let a, = f(x), where a continuous, positive and

o0 o0
decreasing function is for all x >1. Then the series > a,, and the integral | f(x)dx
n=1 1

e e}
both converge or both diverge. For a,, = %,f(x) -1 But jldx =(In x)|‘;O =o0—0
1 X

I
8

X
Hence, Z |x n]| =Y — does not converge. As a result, x[n]= lu[n—l] is not
n

n=—00

absolutely summable.
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2.20

221

2.22

(b) To show that {x[n]} is square-summable, we observe that here a,, = % , and thus,
n

fO0=--. Now, Ofizdx - (— 1)
lx

X X

1 ®© .
=——+1=1. Hence, ¥ izconverges, or in other

1 o n=1n

words, x[n] = lu[n —1] is square-summable.
n
See Problem 2.19, Part (a) solution.

cosS®.n

o0 o0 2 o0
xpln] = pn—11. Now, ¥ |uln]f” = z(c"s‘”cnj <3 L since,
n=1

f174) Nn=—00 nn n=lm"n

2 2
e 0] o0

1 _TE COSO)CI’L
27__a Z( j <
n= n

%. Therefore x,[n] is square-summable.

n

Using the integral test (See Problem 2.19, Part (a) solution) we now show that x,[n] is

o0
COSM. X

o0
not absolutely summable. Now, |
1

1 X .
dx = —-— -cosint(®w,.x)| where
T COS® X

COSM. X

™

1

COSM. X CoS®.N

o0
cosint is the cosine integral function. Since | also
1

diverges. Hence, x,[n] is not absolutely summable.

dx diverges, Y.

n=1

™ T

) 1 K 5 ) 1 o 2
P.=lim —— Y>x%[n]= lim —— Z(xev[n]+x0d[n])
K

. 1
n=—

=P, +P  + lim R § 2[n]- %xz[—n1j=ﬂ’xw +P

X
Yod K—>w 2K+1 2 n=—K n=—ow Yod

K > K > :
as > x“[n]= Y x“[-n]. Now for the given sequence,
n=—K n=—K

1 K, 1 Ko oy K
P, = lim ——— 3Yx,lnl= lim > (j :[j lim >1
o K—ow 2K+l "~ ¢ K—o0 2K+1 Zp\3 3) K—ow2K+1,

6 6 6
(1) lim 1<+1:1(1j . Hence, P, =P -7P, :10—1[1j .
3) Kesa2K+1 213 ev od 2\3
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N-1 » N-l
2.23 x[n]=sin@ukn/N),0<n<N-1. Now E, = ¥ |x[n]| = ¥ sin“(2mkn/N)

n=0 n=0
1 N= N -1
== > 1—c0s(4nkn/N))=— — Zcos(4nkn/N) Let C = Zcos(4nkn/N) and
2n=0 2 n 0 n=0
N-1 N-1 . _ ,—J4mnkn
S= Ysin(4nkn/N). Then C+jS= Y e J4mhn/N =le.—=0. This implies
n=0 n=0 1—e_J4nk/N
C=0. Hence Z, :%
2
224 (a) xin]=A%unl. Then £, = 3 |x,ln]* =42 Sa A—z.
‘" p=—0 n=0 1-a
4
1 © 2 & 1 1 =
(b) xb[n]:n—z},t[n—l]. Then £, xpln]” = 2 | = 2 7=%.
n=—ao n=1 Vl n=1

2.25 (a) xj[n]=(=1)". Then average power

Po=tim 3 |y = lim

2K +1) =1, and ener
Ko 2K+ n=—K K—)002K+1( ) 4

I, = OZO‘, |x1[n]|2: §lzoo.
n=-—oo n=-—0

(b) xp[n]=pln]. Then average power

1 2 . K ) K+1 1
P, = lim —— Z xy[n]” = lim 1= lim = —, and energy
2 Ko>w2K+ 1 -K K—>002K+1n:0 K—>o2K+1 2
2 (e8]
E,, = s ey n]” = X1=
n=—00 n=0
(€) x3[n]=npln]. Then average power
?x — lim |x3[n]| _ hm Zn K(K+1)(2K+1) — o0,
3 K—)oo2K+1n__ 002K+1n =1 K—)oo 6
2 X 9
and energy I, = 5 lx3[n]]” = Tn® =
n=-oo n=0
(d) x4[n]=Age’®". Then average power P, = lim L § > |x 4[n]|2
4 Kow2K+1,°
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= lim > ‘Aoej 0
K—oo2K+1 n=-=-FK

: K - 2 2
= lim S A3 = lim AR QK +1) = A3,

K—>002K+ln:_K Koo2K+1

o0
Y Af =

n=-—o0

00 00 . 2
andenergy fx3: z |x3[n]|2: z ‘AOeJ“)On —

n=-00 n=—00

(e) xs[n]l= Acos(zg + ¢). Note xs[n] is a periodic sequence. Then average power

2 2 M-1
Acos(m+¢)‘ =LA— > (COS(W+2¢)+1}
M M 2,2 M

M-1 1 M-1

_ L 2_ 1
' M nEO |XS[n]| M nEO

M-1 M-1
Let C = 003[4”+ 24)) and S= Y cos(47m+ 24)). Then
M n=0 M

[ 4nn .

M-1 jl==+2¢ A M-1 . . 1 J4m
C+jS= % (M )=e]2¢ Y oMM 2 ST =,
n=0 n=0 1-e’

2 M-1 2
Hence C =0. Therefore P, 1A leA—.
M -0 2

2 p
Since xs[n] is a periodic sequence, it has

nfinite energy.

2.26 In each of the following parts, N denotes the fundamental period and r is a positive
integer.

(@) X{[n]=4cos(2nn/5). Here N and r must satisfy the relation %-N =2mr.

Among all positive solutions for N and r, the smallest valuesare N =5 and r =1.
Hence the average power is given by

1 N-1T > 1 4
Po =y F 005

n=0
(b) X,[n]=3cos(3nn/5). Here N and r must satisfy the relation %-N =2mnr.

Among all positive solutions for N and r, the smallest valuesare N =10 and r =3.
Hence the average power is given by
9 3nn 2
3cos()
n=0 5

PN o
P, :W,Eo %, [n] =5z =45.

(c) X3[n]l=2cos(3nn/7). Here N and r must satisfy the relation 3775-N =2mr.

Among all positive solutions for N and r, the smallest values are N =14 and r = 3.
Hence the average power is given by

N-1
Px3 =% > |X3[n] 2005[377”@

2
? 2.

Ly
14,2
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(d) X4[n]=4cos(5nn/3). Here N and r must satisfy the relation S?H-N =2mr.

Among all positive solutions for N and r, the smallest valuesare N =6 and r =5.
Hence the average power is given by

N-1
! 4cos(sgmj

2
2 13
=—zmumﬂ=—z
6 =0
(e) Xsln]= 4cos(2nn/ 5)+3cos(3nn/5). We first determine the fundamental period

=8.

N; of cos(2nn/5). Here N; and r must satisfy the relation 2,3_—”~N1 =2nr. Among all

positive solutions for Ny and r, the smallest values are N; =5 and r=1. We next
determine the fundamental period N, of cos(3nn/5). Here N, and r must satisfy the

relation %-Nz =2mnr. Among all positive solutions for N, and r, the smallest values

are N, =10 and r =3. The fundamental period of X5[#] is then given by
LCM(Ny,N,)=LCM(5,10) = 10.

Hence the average power is given by

1 NT
v =y Z i =g

1 2( 2nn 2(37'cnj 1
10( > 16cos ( 5 j ZQCOS 5 > 24

n=0 n=0 n=0

(Znnj (31111)
COS| —— |COS| ——
5 5

(f) Xgln]=4cos(5tn/3)+3cos(3nn/5). We first determine the fundamental period

j;8+4.5+0=12.5.

Ny of cos(5nn/3). Here Ny and r must satisfy the relation %n-Nl =2nr. Among all

positive solutions for Ny and r, the smallest values are N; =6 and r=5. We next
determine the fundamental period N, of cos(3nn/5). Here N, and r must satisfy the

relation %-Nz =2nr. Among all positive solutions for N, and r, the smallest values

are N, =10 and r =3. The fundamental period of X¢[n] is then given by
LCM(N;{,N,)=LCM(6,10) =30.
Hence the average power is given by

29
4 cos[smj +3 cos(%"j
3 5

_i Snn 3nn Snn 3nn
=3 (216005 ( 3 )+ > 9 cos ( s )+ > 24005( 3 jcos(s)

n=0 n=0 n=0
o0
2.27 Now , from Eq. (2.38) we have y[n] = Y x[n+kN]. Therefore
k=—w

2
}—Zhdﬂ

j;8+4.5+0:12.5.

Not for sale. 13



o0
yin+N]= Y x[n+kN+ N]. Substituting r=k+1 we get

k=—o0

yn+N]= %x[n +rN]=y[n]. Hence y[n] is a periodic sequence with a period N.

r=-—0o0

2.28 (a)N =5. Now )?p[n] = Y x[n+k5]. The portion of )?p[n] intherange 0 <n<4is

n=—o0
given by x[n—5]+x[n]+x[n+5]={0 0 -4 5 1}

+{-2 -3 0 2 0}+{0 0 0 O O}={-2 -3 -4 7 1},0<n<4.
Hence, one period of X ,[n] isgivenby {-2 -3 -4 7 1},0<n<4.

Now yp[n] = %O;y[n + k5]. The portion of ip[n] in the range 0 <n <4 is given by

n=—oo
yin—5]+y[n]+yln+5]1={0 0 0O O 6}
+{-3 -1 0 8 7}+{-2 0 0 0 0}={-5 -1 0 8 13},0<n<4.
Hence, one period of y,[n] isgivenby {-5 -1 0 8 13},0<n<4.

Now w,[n]= §w[n +k5]. The portion of w,[n] inthe range 0 <n <4 is given by

n=—w
win—=5]+w[n]l+w[n+5]={0 0 0 0 O}

+{0 0 3 2 2}+{-1 0 =2 5 0O}={-1 0 1 7 2},0<n<4
Hence, one period of va[n] isgivenby {-1 0 1 7 2},0<n<4.

(b) N=7. Now ’)Zp[n] = Y x[n+k7]. The portion of )?p[n] intherange 0<n<6 is

n=-—o0
given by x[n—7]+ x[n]+x[n+7]={0 O O 0O -4 5 1}
+{-2 -3 0 2 0 0 0O}+{0 O O O O O O}
={-2 -3 0 2 -4 5 1},0<n<6. Hence, one period of X ,[n] is given by

(-2 -3 0 2 -4 5 1},0<n<6.

Now y,[n]= X yln+k7]. The portionof y,[n] inthe range 0 <n <6 is given by

n=—w
x[n=T]+ x[n]+x[n+7]={0 0O O O O O 6}
+{-3 -1 0 8 7 =2 0}+{0 0 0 O O O O}
={-3 -1 0 8 7 -2 6},0<n<6. Hence, one period of y,[n] is given by

(-3 -1 0 8 7 -2 6,,0<n<6.

Now vT/p[n] = OZO‘,w[n + k7). The portion of va [n] inthe range 0 <n <6 is given by

n=—00
win=Tl+w[n]+wn+7]={0 0 0 0 0 0 0}
+{0 0 3 2 2 -1 O}+{~2 5 0 0 O O O}
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2.29

2.30

231

={-2 5 3 2 2 -1 0},0<n<6. Hence, one period of v“vp[n] is given by
(-2 5 3 2 2 -1 0},0<n<e6.

X[n]=Acos(o,n+¢).

(@) Xnl={1 -1 =1 1 1 =1 —1 1}. Hence A=~2,0, =n/2,=n/4.

(b) Fnl={0 -3 0 3 0 —+3 0 +/3}. Hence A=+/3, o, =n/2,

o=m/2.

(c) x[n]={1 -0.366 -1.366 -1 0.366 1.366}. Hence A=\/5, 0, =n/3,
o=m/4.

(d) Fn]={2 0 =2 0 2 0 -2 0}. Hence A=2,0, =n/2,¢=0.

The fundamental period N of a periodic sequence with an angular frequency o,

satisfies Eq. (2.47a) with the smallest value of N and r.
(a) o, =0.5m. Here Eq. (2.47a) reduces to 0.5tN = 2nr which is satisfied with

N=4r=1.

(b) ©, =0.8n. Here Eq. (2.47a) reduces to 0.8nN =2nr which is satisfied with
N=5r=2.

(c) We first determine the fundamental period N; of Re{e/™/3) = cos(0.2mn). In

this case, Eq. (2.47a) reduces to 0.2nN=2nr; which is satisfied with Ny =10,r =1.

We next determine the fundamental period N, of Im{ej’m/10 = jsin(0.1mn). In this

case, Eq. (2.47a) reduces to 0.1nN ,= 2nr, which is satisfied with N, =20,r, =1.
Hence the fundamental period N of X .[n] is given by

LCM(N;{,N,)=LCM(10,20) = 20.

(d) We first determine the fundamental period N; of 3cos(1.37n). In this case, Eq.
(2.47a) reduces to 1.3nNV (= 2nry which is satisfied with Ny =20,/ =13. We next
determine the fundamental period N, of 4sin(0.57n + 0.57). In this case, Eq. (2.47a)
reduces to 0.5nN,=2nr, which is satisfied with N, =4,r, =1. Hence the
fundamental period N of X 4[n] is given by LCM(N,N,)=LCM(20,4) = 20.

(e) We first determine the fundamental period N; of 5cos(1.5mn +0.757). In this
case, Eq. (2.47a) reduces to 1.5nN=2nr; which is satisfied with Ny =4, =3. We
next determine the fundamental period N, of 4cos(0.67n). In this case, Eq. (2.47a)
reduces to 0.6nN,=2nr, which is satisfied with N, =10,r, =3. We finally
determine the fundamental period N5 of sin(0.57wn). In this case, Eq. (2.47a) reduces
to 0.5nN 3= 2mnry which is satisfied with N3 =4,r; =1. Hence the fundamental period
N of X5[n] isgivenby LCM(N{,N,,N3)=LCM(4,10,4) = 20.

The fundamental period N of a periodic sequence with an angular frequency o,
satisfies Eq. (2.47a) with the smallest value of N and r.
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2.32

2.33

(a) o, =0.6m. Here Eq. (2.47a) reduces to 0.6nN =2nr which is satisfied with
N =10,r =3.

(b) ®, =0.28n. Here Eq. (2.47a) reduces to 0.28nN =2nr which is satisfied with
N =50,r =17.

(c) o, =0.45n. Here Eq. (2.47a) reduces to 0.45nN = 2nr which is satisfied with
N =40,r =9.

(d) o, =0.55n. Here Eq. (2.47a) reduces to 0.55nN = 2nr which is satisfied with
N =40,r =11.

(e) o, =0.65n. Here Eq. (2.47a) reduces to 0.65nN = 2nr which is satisfied with
N =40,r =13.

®, =0.08m. Here Eq. (2.47a) reduces to 0.08nN = 2nr which is satisfied with

N =25,r =1. Forasequence X,[n]=sin(w,n) with a fundamental period of N =25,
Eq. (2.47a) reduces to 25w, =2nr. For example, for r =2 we have

®, =4n/25=0.16n. Another sequence with the same fundamental period is obtained
by setting » =3 which leads to w3 =6n/25=0.24n. The corresponding periodic
sequences are therefore X,[n] =sin(0.16nn) and X3[n] = sin(0.247n).

The three parameters A,Q,,,and ¢ of the continuous-time signal x,, (¢) can be
determined from x[n] = x,(nT) = Acos(Q2,nT + ¢) by setting 3 distinct values of n.
For example

x[0]=Acos¢ =a,
x[-1]=Acos(-Q,T +¢) = Acos(Q,T)cosd + Asin(QQ,T)sind =f3,,
x[1] = Acos(Q,T +¢) = Acos(Q2,T)cosd— Asin(QQ,T)sinp = 7.

Substituting the first equation into the last two equations and then adding them we get

cos(Q,T) = Bzﬂ which can be solved to determine Q. Next, from the second
(04

equation we have Asin¢ = —Acos(Q,T)cosd = —acos(Q,T). Dividing this
B—ocos(QQ,T)

asin(Q,T
which can be solved to determine ¢. Finally, the parameter is determined from the first
equation of the last page.

equation by the last equation on the previous page we arrive at tan¢ =
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2.34

2.35

Now consider the case Qp = 2771 =2Q,. Inthiscase x[n]= Acos(nt+¢)=p and

x[n+1]= Acos((n+Dm+¢)= Acos(nm+¢) =B. Since all sample values are equal, the
three parameters cannot be determined uniquely.

Finally consider the case Q7 = 2T—n <2Q,. Inthiscase x[n]=Acos(Q nT + )

= Acos(o,n+¢) implying o, =Q, 7T >n. Asexplained in Section 2.2.1, a digital
sinusoidal sequence with an angular frequency o, greater than m assumes the identity

of a sinusoidal sequence with an angular frequency in the range 0 < < w.. Hence,
Q, cannot be uniquely determined from x[n] = Acos(Q,nT +¢).

x[n]=cos(Q nT). If x[n] is periodic with a period N, then
x[n+ N1 =cos(QonT + QyNT) = x[n] = cos(QqnT). This implies Q,NT = 2zr with
r any nonzero positive integer. Hence the sampling rate must satisfy the relation

T=2nr/Q,N. If Q, =20, i.e., T =n/8, then we must have 20N~g:2nr. The

smallest value of N and r satisfying this relationare N =4 and r=5. The
fundamental period is thus N =4.

(a) Foraninput x;[n],i =1,2, the output is
yi[nl=byx;[n]+byx;[n—1]+byx;[n—2]+ayy;[n—1]+ayy;[n—2],i =1,2. Then, for
an input x[n] = Ax;[n]+ Bx,[n], the output is y[n] = by (Axy[n]+ Bxy[n])

+ by (Axj[n—1]+ Bxy[n—1]) + by (Ax;[n—2]+ Bxy[n—2]) + a; (Ay;[n — 1]+ By, [n —1])
+aj(Ay|[n—=2]+ By,[n—2]) = A(byxi[n]+ by x[n =11+ byxi[n-2]+ ayy;[n—1]
+asyy[n—11)+ B(byxy[n]+ byxy[n—1]+byxy[n—2]+ajxy[n—1]+arxy[n—2])

= Ay[n]+ By,[n]. Hence, the system of Eq. (2.18) is linear.

. . . o x;[n/L], n=0,£L,£2L,---
(b) Foraninput x;[n],i =12, the output is y;[n] _{ 0, otherwise.
For an input x[n] = Ax[n]+ Bx,[n], the output for n =0,+ L,+2L,... is
yln]l=x[n/L]= Ax{[n/ L]+ Bx,[n/L] = Ay;[n]+ By,[n]. For all other values of

n,y[n]=A-0+ B-0=0. Hence the system of Eq. (2.20) is linear.

(c) Foraninput x;[n],i =12, the outputis y;[n]= x;[n/M],i=12. Then, for an input
x[n] = Axq[n]+ Bx,[n], the output is y[n]= Ax;[n/M]+ Bx,[n/M]= Ay,[n]+ By, [n].
Hence the system of Eq. (2.21) is linear.
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2.36

M-1
(d) Foraninput x;[n],i =12, the output is y;[n] :ﬁ > x;[n—kl,i =12. Then, for
k=0
. . 1 M
an input x[n] = Ax;[n]+ Bx,[n], the output is y[n] = M Z%Aﬁq [n—k]+ Bxy[n —k])
k=0

_A( le[n k]j+B( sz[n k]j Ay;[n]+ By,[n]. Hence the system of
M ;-0 M ;-0

Eq. (2.61) is linear.

(e) The first term on the RHS of Eq. (2.65) is the output of a factor-of-2 up-sampler.
The second term on the RHS of Eq. (2.65) is simply the output of an unit delay
followed by a factor-of-2 up-sampler, whereas, the third term is the output of an unit
advance operator followed by a factor-of-2 up-sampler. We have shown in Part (b) that
the up-sampler is a linear system. Moreover, the unit delay and the unit advance
operator are linear systems. A cascade of two linear systems is linear and the linear
combination of linear systems is also linear. Hence, the factor-of-2 interpolator of Eq.
(2.65) is a linear system.

(f) Following the arguments given in Part (e), we can similarly show that the factor-of-
3 interpolator of Eq. (2.66) is a linear system.

(a) yln]= n3x[n]. For an input x;[n],i =1,2, the output is y;[n] = n3x,-[n],i =12
Then, for an input x[n] = Ax;[n]+ Bx,[n], the output is y[n]=n>(Ax,[n]+ Bxy[n])
= Ay,[n]+ By,[n]. Hence the system is linear.

For an input x[n]=J[n], the output is the impulse response A[n] = n38[n]. As
h[n] =0 for n <0, and the system is causal.

Let x[n] =1 for all values of n. Then |y[n] = and y[n] - o as n — . Since a

bounded input results in an unbounded output, the system is not BIBO stable.
Finally, let y[n] and y;[n] be the outputs for inputs x[n] and x;[n], respectively. If

xi[n]=x[n—-n,] then y,[n]=n xl[n] n x[n—no]. However, y[n—n,]=

(n- no) x[n—n,]. Since y;[n]# y[n—n,], the system is not time-invariant.

(b) y[n]=(x[n])>. Foraninput x;[n],i =12, the outputis y;[n] = (x;[n])>,i =12.
Then, for an input x{n] = Ax,[n]+ Bx,[n], the output is y[n] = (Ax;[n] + Bx,[n])’
# A(xl[n])s + B(xz[n])s. Hence the system is nonlinear.

For an input x[n] = d[n], the output is the impulse response A[n] = (S[n])
h[n] =0 for n <0, and the system is causal.

Not for sale. 18



For a bounded input |x[n]| < B < oo, the magnitude of the output samples are
yin] = ‘(x[n])s‘ - |x[n]|5 < B’ < oo. As the output is also a bounded sequence, the

system is BIBO stable.

Finally, let y[n] and y;[n] be the outputs for inputs x[n] and x;[n], respectively. If
xi[n]=x[n—n,] then y,[n] = ()cl[n])5 = (x[n - no])5 =yln—n,]. Hence, the system
IS time-invariant.

3
(c) ylnl=B+ X x[n—¢] with B anonzero constant. Foran input x;[n],i =1,2, the
=0

3
outputis y;[n] =B+ X x;[n—/],i=12. Then, for an input x[n] = Ax;[n]+ Bx;[n],
=0

3 3 3
the output is y[n] =P+ X(Ax;[n—0]+Bxy[n—11)=B+ S Ax;[n—L1+ ¥ Bxy[n—/]
=0 =0 =0

# Ay[n]+ By,[n]. Hence the system is nonlinear.

For an input x[n]=J[n], the output is the impulse response A[n]=p+ > o[n—/] As
=0
hln] =0 for n <0, the system is noncausal.

For a bounded input |x[n]| < B < w0, the magnitude of the output samples are

|y[n]| <B+4B <. Asthe output is also a bounded sequence, the system is BIBO

stable.
Finally, let y[n] and y,[n] be the outputs for inputs x[n] and x;[n], respectively. If

3
xi[n]=x[n—-n,] then y,[n]=PB+ X x[n-n,—¢]=yln—n,]. Hence, the system is
/=0

time-invariant.

(d) ynl= 1n(2+|x[n]|) For an input x;[n],i = 1,2, the output is y;[n] = ln(2+|x,-[n]|)
i =1,2. Then, for an input x[n] = Ax;[n]+ Bx,[n], the output is

yln] = 1n(2 + |Ax1 [n]+ Bx, [n]|)¢ Ay;[n]+ By,[n]. Hence the system is nonlinear.
For an input x[n] = 8[n], the output is the impulse response A[n]+ 1n(2 +|8[n]|).

For n <0, h[n] =1n(2) # 0. Hence, the system is noncausal.

For a bounded input |x[n]| < B < oo, the magnitude of the output samples are

y{n]|<In(2+ B) <. As the output is also a bounded sequence, the system is BIBO

stable.
Finally, let y[n] and y,[n] be the outputs for inputs x[n] and x;[n], respectively. If
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xy[n]=x[n—n,] then y[n] = 111(2 + |x[n -n, ]|) =y[n—-n,]. Hence, the system is
time-invariant.

(e) yln]= ax[-n+ 2], with a nonzero constant. For an input x;[n],i = 1,2, the output
IS y;[n] =ox;[-n+2], i =1,2. Then, for an input x[n] = Ax;[n]+ Bx,[n], the output is
yln] = Aoxy[—n + 2]+ Boxy[-n +2] = Ay [n]+ By, [n]. Hence the system is linear.
For an input x[n] = d[n], the output is the impulse response A[n]= ad[-n+2]. For
n<0, h[n] =0. Hence, the system is causal.

For a bounded input |x[n]| < B < o, the magnitude of the output samples are

[y[n]| = |auB| < 0. As the output is also a bounded sequence, the system is BIBO stable.
Finally, let y[n] and y,[n] be the outputs for inputs x[n] and x;[n], respectively. If
xy[n]=x[n—-n,] then y,[n]=oxi[-n+2]=ax[-(n—n,)+2]=y[n—-n,]. Hence, the
system is time-invariant.

(f) y[nl=x[n—4]. Foraninput x;[n],i =12, the output is y;[n] = x;[n—4],i =1,2.
Then, for an input x[n] = Ax;[n]+ Bx,[n], the output is y[n]= Ax;[n—4]+ Bx,[n—4]
= Ayy[n]+ By,[n]. Hence the system is linear.

For an input x[n]=J[n], the output is the impulse response A[n]=3d[n—4]. For n <0,
h[n]=0. Hence, the system is causal.

For a bounded input |x[n]| < B < oo, the magnitude of the output samples are

|y[n]| = B <. As the output is also a bounded sequence, the system is BIBO stable.
Finally, let y[n] and y;[n] be the outputs for inputs x[n] and x;[n], respectively. If
x1[n]=x[n—-n,] then y,[n]=x[n-n,—4]=y[ln—n,]. Hence, the system is time-
invariant.

2.37 Let y[n] and y;[n] be the outputs of a median filter of length 2K +1 for inputs x[n]
and x;[n], respectively. If x{[n]=x[n—-n,], then
yilnl=med{x|[n-K], ..., xi[n-1], xi[n], x/[n+1], ..., x[n+K]}
=med{x[n-n, -K], ..., x[n—-n,-1l, x[ln-n,], x[n-n,+1], ..., x[n—-n, +K]}
=y[n—n,]. Hence, the system is time-invariant.

2.38  y[nl=x[n+1]-2x[n]+x[n—1]. Foraninput x;[n],i =1,2, the output is
yi[n]=x;[n+1]1-2x;[n]+ x;[n—1],i =1,2. Then, for an input x[n] = Axj[n]+ Bx,[n],
the output is
yln] = Axj[n+1]+ Bxy[n+1]-2Ax|[n] - 2Bx;[n]+ Axi[n —1]+ Bx,[n—1]
= Ay [n]+ By,[n]. Hence the system is linear.

If x;[n]=x[n-n,], then y|[n]=x[n—-n, +1]-2x[n—n,]+ x[-n,n—-1]1=y[n—n,].
Hence, the system is time-invariant.
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2.39

2.40

241

The impulse response of the system is A[n]=0[n+1]—208[n]+d[n—1]. Now
h[-1]1=08[0]=1. Since h[n]= 0 for all values of n < 0, the system is noncausal.

y[n]= xz[n] —x[n—1]x[n+1]. Foraninput x;[n],i =1,2, the output is

yi[n] = x*[n]-x;[n—1]x;[n +1],i =12. Then, for an input x[n] = Ax,[n]+ Bx,[n], the
output is y[n] = (Ax;[n]+ Bxy[n])* — (Ax;[n =11+ Bxo[n— 11 Ax[n+ 1]+ Bxy[n+1])

# Ay[n]+ By,[n]. Hence the system is nonlinear.

If x;[n]=x[n—n,], then y[n]= xlz[n] —x1[n—1]x;[n+1]

=x’[n- n,l—x[n—n, —1x[n—n, +1] =y[n—n,]. Hence, the system is time-
invariant.

The impulse response of the system is A[n] = 82[n] —d[n—118[n+1]=9[n]. Since
h[n] =0 for all values of n < 0, the system is causal.

1
= E(y[n 1]+ -

converges to some constant K as n — co. The input-output relation of the system as

x[n]

y[n] j Now for an input x[n] = au[n], the output y[n]

n — oo reduces to K = l(K +&j from which we get K? =a orin other words

K =+o.

For an input x;[n],i =1,2, the output is y;[n] =%(y,~[n—l]+ ?;,-[n] j’i ~12. Then,
Yiln—
for an input x[n]= Ax;[n]+ Bx,[n], the output is y[n] = %(y[n 1]+ Axy [”[] + B1)]C2[n]j'
yin—

On the other hand,

1 Axq[n] 1 Bxj[n]
A B =—| A -1 —| B 1]+ —= .
yilnl+ By, [n] 2( yiln ]+y1[n—1]J+2[ y2 [ ]+y2[n_1]j¢)7[l’l]

Hence the system is nonlinear.

If x;[n]=x[n-n,], then y[n] =l[y1[n—1]+Mj =y[n—n,]. Hence, the
2 yiln—1]

system is time-invariant.

yn] = xln] = y*[n =11+ y{n - 1].

For an input x;[n],i =1,2, the output is y;[n] = x;[n] - yiz[n —1]+y;[n—1]i=1.2.
Then, for an input x[n] = Ax;[n]+ Bx,[n], the output is
yn] = Ax[n]+ Bxy[n]— y*[n—1]+y[n—1]. On the other hand, Ay,[n]+ By, [n]
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242

2.43

2.44

2.45

= Ax;[n]- Ay [n—1]+ Ay;[n— 1]+ Bxy[n]— By3[n— 11+ By,[n—1] # y[n]. Hence the
system is nonlinear.

The impulse response of the factor-of-3 interpolator of Eq. (2.66) is the output for an
input x,[n] =9J[n] and is given by

hn] = 8[n] + %(S[n 1)+ [ 1])+ é(S[n 2]+ 8[n+2]) or equivalently by

{h[n]}:%, 2 1, 2 ;}—ZSnsz.

3’ 3’
The input-output relation of a factor-of- L interpolator is given by

L k(xu [n—k]+x,[n+k]). Itsimpulse response is the output for

L-17 _
yin]=x,[n]+ X

k=1 L

. . . L1y —k
an input x,[n] = 8[n] and is thus given by A[n]=8[n]+ ¥ T(S[n —k]+8[n+k])
k=1

or equivalently by

2 L-2  L-1 L-1 L-2 2

{h[n]}zg, T l}—L+1snsL—1.
L L L L L

The impulse response h[n] of a causal discrete-time system satisfies the difference
equation A[n]—ah[n—1]=3[n]. Since the system is causal, we have h[n]=0 for

n < 0. Evaluating the above difference equation for n =0, we arrive at
h[0]—ah[-1]=1 and thus A[0]=1. Next, for n =1, we have A[1]-ah[0] =0 and thus
h[1] = a. Continuing we get for n =2,h[2]—ah[1]=0, i.e., A[2]=ah[1] = a®. Assume
hn—1]=a""" with n>0. From the difference equation we then have
hinl—ahln—11=0,i.e., h[n]=ah[n—1]=a". Since the last equation holds for

n =0,1,2, by induction, it holds for n > 3.

As x[n] and h[n] are right-sided sequences, assume x[n]=0 for all » < Ny and
h[n]=0 and n<N,. Hence, y[n]=h[n]® x[n]=0 forall n <N+ N, and thus

y[n] is also a right-sided sequence. Therefore, %y[n]= %h[n]@x[n]
n:N1+N2 n=N1+N2
= 2 Yhlklx[n—k]= X Yhlklx[n—k]= X hlk] X x[n—k]
I’l=N1+N2 k=N2 k=N2 I’l=N1+N2 k=N2 I’l:N1+N2

o0 o0 o0 o0
= Y hlk] Y xlm] = Y hlk] Y xIm] as x[m]=0 forall m < N;. Hence,
k=N2 m=N1 +N2 -k k=N2 m=N1

2 y[n] =(Z h[n]j(z x[n]j-
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2.46

2.47

2.48

2.49

0 0 n k
(@) op[n)®un]= Yokulklun—kl= Zaku[n—k]={zk=0°° » n20,
k=—00 k:o O, n<0.

o0 o0 n k
(b) na/u[n)@un)= X ka plkluin -kl = Zkocku[n—k]:{zkzoka . n>0,
k=— k=0 0, n<0.

Now from Eq. (2.72) an arbitrary input x[n] can be expressed as
x[n]= %x[k]fi[n — k] which can be rewritten using Eq. (2.41b) as
k=—w

snl= SAklpln—Kl-pin—k—-11) = Saklpln—k] - > aklpln—k-1}

k=—o0 k=—o0 k=—o0
Since s[n] is the response of an LTI system for an input p[n], s[n—k] is the response
for an input u[n — k] and s[n—k —1] is the response for an input u[n —k —1]. Hence,

the output for an input OZO:x[k]u[n —k] -

OZO:x[k]u[n —k—1] is given by
k =—

k
yln] = %O‘,x[k]s[n —k]- %O:x[k]s[n —k—-1]1=x[n]®s[n]—x[n—-1]1O s[n—1].
k=—o0 k=—o0
yln] = OZO‘,h[m]?c[n —m]. Hence,
yln+kN]= % h[m]X[n+ kN —m] = OZO‘,h[m]x[n —m]=y[n]. Thus, y[n]isalso a

m=-— m=—

periodic sequence with a period N.

In this problem we make use of the identity d[n—m]®@d3[n—r]=08[n—m—r].

@) yi[n]=x [n]1®hy[n] = (38[n — 21— 28[n + 11)O(= 8[n + 2]+ 43[n] + 28[n — 1)

= —38[n —21@8[n + 2] +128[n — 2]1@ [ n] — 68[n — 2]@ 8[n — 1] + 28[n + 11O &[n + 2]
—-83[n+1]®J[n]+48[n+1]®J[n—1]. Hence

yiln]=-38[n]+1208[n —2]—608[n —3]+208[n+ 3] —80[n + 1] + 40 n]
=208[n+3]-88[n+1]+9[n]+128[n—2]-68[n—3].

(b) y,[n]=x,[n]1@®hy[n] = (58[n — 3]+ 28[n +1])@(38[n — 4]+ 1.58[n — 2] — 8[n + 1])
=158[n —3]1@8[n — 4]+ 7.58[n —3]@8[n — 2] — 58[n — 31@8[n + 1]+ 68[n + 1]@ 5[ n — 4]
+38[n +1]1@8[n —2] - 28[n +1]1@8[n + 1] =158[n—7]+7.58[n — 5] - 58[n 2]
+68[n—3]+308[n—1]—-20[n+2].
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2.50

2.51

(€) y3[n]=x;[n]®hy[n] = (= 38[n — 2] - 28[n +11)@(38[n — 4]+ 1.58[n — 2] - 8[n +1])
=99[n—-2]10®J3[n—4]+4.58[n—-2]@8[n—-2]-30[n—-2]1®3[n+1]-63[n+1]1®5[n —4]
—38[n+11@8[n —2]+28[n+1]1@8[n + 1] = 98[n — 6] + 4.58[n — 4] - 38[n — 1]

—60[n—3]-38[n—1]-38[n—1]+28[n+2] =28[n+2]—68[n—1]—68[n — 3]
+4.58[n—4]+90[n—6].

(d) yq[n]l=x,[n]1®hy[n] = (58[n— 3]+ 28[n + 11)®(= 8[n + 2] + 48[ n] — 28[n —1])

= —58[n —31@® 8[n + 2]+ 208[n — 3]1® 8[n] — 108[n — 31® 8[n — 1] - 28[n + 1] &[n + 2]
+88[n+11@8[n]— 43[n +1]1©8[n—1] = —58[n—1]+208[n —3]—108[n — 4] - 28[n + 3]
+88[n +1]—48[n] =—28[n +3]+88[n +1]—48[n] - 58[n — 1]+ 208[n — 3] - 103[n — 4].

(@) uln]=x[n]® y[n]

={-24, 42, -5, =20, —45, 23, 66, —25, —42, —-17, 22, 14, -4}, -4<n<8.

(b) v[n]=x[n]1®w[n]
={-12, 7, 5, 10, —16, —3, —28, 30, 13, —6, —15, —4, 10}, -1<n<11.

(c) gln]l=w[nl® y[n]

={18, 3, 3, —14, 25, 26, 60, —11, —16, —14, 26, 39, —10},1<n <13.

=N n, &mIhln—m]. Now, hln—m] is defined for My <n—m <M. Thus,

for m = Ny, h[n—m] is defined for M; <n—-N; < M, , or equivalently, for

M +Ny<n<M,+Ny. Likewise, for m = N,, hln—m] is defined for

My <n—-N, <M,,orequivalently, for M; + Ny <n< M, + N,. For the specified

sequences Ny =—-3,N,=4,M| =2,M»=6. (a) The length of y[n] is

My +Ny—-M{—N;y+1=6+4-2-(-3)+1=12. (b) The range of n for y[n] =0 is
min(M| + Nj,My + Ny) <n<max(M; + N;,M, +N,), i.e.,

M|+ N; <n<M,+N,. Forthe specified sequences the range of n is —1<n <10.
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2.52

2.53

2.54

2.55

2.56

yin] =x;[n]®x,[n] = %O:xl [n—k]x,[k]. Now,

k=—o0

v[n]=x1[n—=N;1®x,[n—-N,]= ozojxl[n—Nl —klx,[k—N,]. Let k=N, =m.
k:—OO

Then v[n] = ozojxl[n—Nl — Ny —m]xy[m]=y[n—N; —N>].

m=—0o0

glnl = x1[n]® x5 [n]® x3[n] = y[n]® x3[n] where y[n]= x1[n]® x,[n]. Now
vin]=xi[n—N{1® x,[n— N,]. Define h[n]=v[n]® x3[n— N3]. Then from the

results of Problem 2.52, v[n] = yln—N; —N,]. Hence,
h[n] = y[n— Ny —N,1®x3[n—N3]. Therefore, making use of the results of Problem

2.52 again we get A[n]=y[n—N; — N, —N3].

yln] = x[n]® h[n] = %O:x[n—k]h[k]. Substituting £ by n—m in this expression, we
k=—x

get y[n]= § x[m]h[n—m] = h[n]® x[n]. Hence the convolution operation is

n=-—0

commutative.

Let y[n] = x[n]®(h;[n]+ hy[n]) = OZO‘,x[n — k(A [k1+ hy[k])
k=—0

= S AMn—kIyIkl + S xn—kliylk] = xn]®hy[n]+ x[n]@®hy[n]. Hence the

k=—© k=—00

convolution operation is also distributive.

x3[n]® x5 [n]® x{[n] = x3[n]O(x, [n]O x1[n]). AS x5[n]® x{[n] is an unbounded

sequence, the result of this convolution cannot be determined. But
X [n]O x3[n]® x1[n] = x5 [n]O(x3[n]O x1[n]). NOow x3[n]® x;[n]=0 for all values

of n, and hence the overall result is zero. As a result, for the given sequences
x3[n]@ x,[n]® x1[n] # x,[n]® x3[n]O x;[n]
wln] = x[n]® h[n]® g[n]. Define y[n]= x[n]®h[n] = x[klh[n—k] and
k
flnl=h[n]1® g[n] =Y glklhln—k]. Consider wi[n]= (x[n]®h[n])® g[n]
k

=y[n]® g[n] =3 g[m]>. x[kJh[n—m—k]. Now consider w,[n]= x[n]@®(h[n]® g[n])
m k
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2.57

2.58

2.59

= x[n]® f[n] =X x[k]> glmh[n—k —m]. The difference between the
k m

expressions for wy[n] and w,[n] is that the order of the summations is changed.

A) Assumptions: h[n] and g[n] are causal sequences, and x[n] =0 for n<0. This
0, for m <0,

S x[KIh[m- K], for m>0, | W= Zglmbin=m]

m=0

implies y[m] z{

n n-m

= Y g[m] X x[k]h[n—m—k]. All sums have only a finite number of terms. Hence,
m=0 k=0

the interchange of the order of the summations is justified and will give correct results.

B) Assumptions: h[n] and g[n] are stable sequences, and x[n] is a bounded sequence
with |[x{n]| < B <oo. Here, ylm] =Y., hlklx{m—k]= (Zii g, AT = k])

+&k, k, [m] with ‘Skl,kz [m]‘ <¢,B. Inthis case, all sums have effectively only a finite

number of terms and the error ‘8k1,k2 [m]‘ can be reduced by choosing k; and

ko sufficiently large. As a result, in this case the problem is again effectively reduced

to that of the one-sided sequences. Thus, the interchange of the order of the
summations is again justified and will give correct results.

Hence, for the convolution to be associative, it is sufficient that the sequences be stable
and single-sided.

ylnl =2 _o x[n—k]Jh[k]. Since h[k] is of length M and defined for 0 <k <M -1,

the convolution sum reduces to y[n] = XM D x[n—kln[k]. y[n] will be nonzero for

all those values of n and for k which n—k satisfies 0<n—-k<N-1. Minimum
value of n—k =0 and occurs for lowest n at n =0 and k =0. Maximum value of
n—k= N —1 and occurs for maximum value of k at M —1. Thus n—k=M —1
—n =N+ M —2. Hence the total number of nonzero samples = N + M —1.

y[n] = ZfCV:‘le[n —k]x[k]. The maximum value of y[n] occursat n=N —1 when all
product terms are present. The maximum value is given by
MN —11=X 3 Jay - 1-gay.

y[n] = ZkN:‘le[n —k]h[k]. The maximum value of y[n] occursat n =N —1 when all
product terms are present. The maximum value is given by
AN -11= S Jay -1 gby.
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2.60 (a) ylnl= gey[nl®h,,[n]l= 25— _he,[n—klg,,[k]. Now,

—nl= Y- _he [-n—klg,,[k]. Replace k by —k. Then the summation on the left

becomes y[—n] =X 3_ _ohey[—1+ k1o, [kl = X1 oo hey [—(n — k)18, [—K]
=y[n]. Hence g, [n]®h,,[n] isan even sequence.

(b) ylnl= g [nl1®hygln] = X5 _hogln—klge,[k]. Now,

Y=nl =5 hoal—n—klg ey k] = 27— o hogl—n+ klg ey [—k]

= Zfz—oo hog[—(n—k)1g e [—k] = _zfz—oo hygln—k1geylk] = —yln].
Hence g,,[n]1®h,,[n] is an odd sequence.

(€) ylnl=goqlnl®hyglnl=X5- _hygln—klg,qlkl. Now,

Y=nl= X8 _ohogl—n—k1goalkl = Z5—_hoql—n + kg pql—k]

= Zfz—oo hod [—(l’l - k)]god [_k] = Zfz—w hod [l’l - k]god[k] = )’[n]
Hence g,,[n]1®h,,[n] is an even sequence.

2.61  The impulse response of the cascade is given by A[n] = hy[n]® h,[n] where

hn]=0o"uln] and hy[n]=p"un]. Hence, h[n]:(zzzoockﬁn_k).t[n].

2.62  Now h[n]=a"p[n]. Therefore y[n]=X>%__ hlklx[n—k]= >0 (ka[l’l — k]

= xn]+ X2 a0k xn— k] = x{n]+ aX P goXx[n—1-k] = x[n]+ o yln—1].
Hence, x[n]= y[n]—oy[n—1]. Thus the inverse system is given by

y[n] = x[n]—ox[n—1]. The impulse response of the inverse system is given by
hn]l={1, a},0<n<l1.

2.63  From the results of Problem 2.62 we have A[n] = (Zzzoakﬁn_k)i[n]. Now,

0 0

0 k k
vinl= Yxn-klkl= ¥ (Zamﬁk_m}t[m]x[n—kh > { Zocmﬁk_m]x[n—k]

k=—0 k=—00\m=0 k=0\m=0

00 k
=x[n]+ ¥ [ ZocmBk_m}([n—k]. Substituting » =k —1 in the last expression we get
k=1\m=

m=

i

0
0

r=0\m=

ylnl = x[n]+ Z (

= x[n]+B

ng
ﬁMw

mBr—m}‘[n_r_l]_l_ §Qr+1x[n—r—1]
r=0
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2.64

2.65

2.66

2.67

= x[n]+Byln - 11+ ox{n— 1]+ o’x[n—2]+ o> x{n—3]+.... The inverse system is

therefore given by x[n] = y[n]—(a+B)y[n—1]+ apy[n—2].

(@) hln]=hi[n]@ hy[n]1® h3[n]® hz[n]+ h[n]® hy[n]+ h3[n] @ hy[n].

h[n]® hy [n]® hsy[n]

i i :
(b) hln] h4[”]+1—h1[n]®hz[n]®h5[”]

hln] = hi[n]® hy[n]+ hz[n]. Now
hi[n]® hy[n] = (28[n —2]—38[n + 1]) ©(d[n — 1]+ 28[n + 2])
=20[n-2]®3[n—1]-38[n+12]@d[n—1]+28[n—-2]0d[n+2]-38[n+1]Od[n + 2]

=208[n —3]+0[n]—638[n—3]. Therefore,
h[n]=208[n—3]+08[n]—608[n—3]+50[n—5]+78[n—3]+208[n—1]-98[n]+30[n+1].

3
(a) The length of x[n] is 8—4+1=5. Using x[n] = L{y[n] — Y hlk]x[n— k]} we
h[0] k=0

arrive at {x[n]}=1{3, -2, 0, 1, 2},0<n<4.

3
(b) The length of x[n] is 7—4+1=4. Using x[n] :L{y[n]— Zh[k]x[n—k]} we
h[0] k=0
arrive at {x[n]}={1, 2, 3, 4},0<n<3.

4
(c) The length of x[n] is 8—5+1=4. Using x[n] :L{y[n]— Zh[k]x[n—k]} we
h{0] k=0

arrive at {x[n]}={1, -2, 3, —1},0<n<3.

yln] = ay[n —1]+ bx[n]. Hence, y[0] = ay[—1]+ bx[0]. Next, y[1] = ay[0] + bx[1]

= a(ay[-1]+ bx[0])+ bx[1] = a® y[~1] + abx[0] + bx[1]. Continuing further in a similar
way we obtained y[n] = a1 y[-1]+ Zzzoan_kbx[k].

(a) Let y{[n] be the output due to an input x;[n]. Then

yiln] = a”“y[—l] + Zzzoan_kbxl [k]. If xy[n]=x[n—n,], then

vilnl=a" -1+ 30 a" K balk—n, 1= "Y1+ 212 a0 T b,
However,

yln—n,]= an+1y[—1] + Zzzoan_kbx[k -n,]= a e +1y[—1] + Zf;go a7 bx(r].
Hence y[n]# y[n—n,] if y[-1]# 0, i.e., the system is time-variant. The system is
time-invariant if and only if y[-1]=0, asthen y;[n]=y[n—-n,].
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2.68

2.69

2.70

(b) Let yi[n] and y;[n] be the outputs due to inputs x{[n] and x;[n], respectively.
Let y[n] be the output due to an input axq[n]+Bx,[n]. However, ay[n]+By,[n] =

aa =11+ Ba" y[-11+ aZﬁzoa”_kbxl[k] + BZZ:Oa”_kbxz [k], whereas,

Mnl=a" [0+ ax?_ga" Fbx [k1+BEi_ a" *bx; [kl Hence, the system is
nonlinear if y[—1]= 0 and is linear if and only if y[-1]=0.

(c) Generalizing the above result it can be shown that an N —th order causal discrete-
time system is linear and time-invariant if and only if y[-r]=0,1<r < N.

yln] = pox(nl+ p1x[n—11—-d;yln—1] leads tox[n] = R ylnl+ A yln—1]— ﬂx[n 1],
Po Po Po

which is the difference equation characterizing the inverse system.

slnl =27 _ohlkluln =kl =27 _ohlk], n =20, and s[n]=0,n<0. Since A[k] is
nonnegative, s[n] is a monotonically increasing function of n for n >0, and is not
oscillatory. Hence, there is no overshoot.

(@) fInl= fln—11+ fln—2]. Let fln]=or", then the difference equation reduces to

or” — o1 — a2 = 0 which reduces further to > —r—1=0 resulting in

n n
rzli‘B. Thus, f[n]:al(”ﬁj +a1(1_‘6) :
2 2 2
As f[0]=0, hence o +0a, =0. Also f[1]=1,, and hence

(0‘1;“2)+\/§(°‘1;a2) =1. Solving for a,; and a.,,we get o] = -0y =

= L5 (6]

52 U2 )
(b) y[n]=yln—11+ y[n—2]+ x[n—1]. As the system is LTI, the initial conditions are
equal to zero. Let x[n]=9J[n]. Then y[n]= y[n—1]+ y[n—2]+06[n—1]. Hence,
y[0]= y[-1]+ y[-2]=0 and y[1] = y[0]+ y[-2]+8[0]=1. For n>1, the
corresponding difference equation is y[n] = y[n —1]+ y[n — 2] with initial conditions
y[0]1=0 and y[1] = 1, which are the same as those for the solution of the Fibonacci’s

n n

\IB(H;B) - \16(1_2‘6) . Thus denotes the impulse

response of a causal LTI system described by the difference equation
yinl=yln—1]+ yln=2]+ x[n—1].

. Hence,

-

sequence. Hence y[n]=

2.71 y[n]=ay[n—1]+ x[n]. Denoting y[n]= y,.[n]+ jy;,[n], and o =a+ jb, we get
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2.72

2.73

2.74

Vrelnl+ jyimnl=(a+ jb)(y,.[n =11+ jy;, [n—1]1)+ x[n]. Equating the real and the
imaginary parts, and noting that x[n] is real, we get
Vrelnl = ay,.[n—11-by;,[n—11+ x[nl, y;,[n]=by,.[n—1]+ay;,[n—1]. From the

second equation we have y;,,[n—1] = iyim [n]- éyre[n —1]. Substituting this
a a

equation in the top left equation we arrive at
2
Vyelnl = ay, ln—11-2y. 01+ 2=y [n—1]+ x(n], from which we get
a a
by,ln—1]=-ay,[n—1]+ (a2 + b2 )Y,eln—2]+ax[n—1]. Substituting this equation
in the equation y,,[n] = ay,.[n—1]-by;,,[n—1]+ x[n] we arrive at

V,elnl=2ay,,[n—11-(a® +b>)y,,[n— 2]+ x[n] — ax[n —1] which is a second-order
difference equation representing y,,[n] in terms of x[n].

The first-order causal LTI system is characterized by the difference equation
yln] = poxlnl+ pyx[n—11—-d;yln—1]. Letting x[n]=3J[n] we obtain the difference
equation representation of its impulse response i[n] = pyd[n]+ p;8[n—1]1—dhln—1].
Solving it for n =0,1,2, we get A[0] = pq,A[l] = p; —d 0] = p; —d; pgy, and
h[2] = —dh[1]1 = —d po(p1 —d1po)- Solving these equations we get py = h[0],

_ hl2] h[2]A[0]

dy = Tk and p; =A[1]- Hl

M N M N
Y pixln—kl= Ydiyln—k]. Let x[n]=9[n]. Then > pidln—kl= > dihln—k]
k=0 k=0 k=0 k=0

Thus, p, = Z,’{V:Odkh[r —k]. Since the system is assumed to be causal, A[r —k] =0
forall k>r. Hence, p, =3 (dihlr—kl1=3N  hlkld,_.

For a filter with a complex-valued impulse response, the first part of the proof is the
same as that for a filter with a real-valued impulse response. From

yinl = E- ., hlklx[n— k] we get |y[n] = ‘z;?:_oo hlk]x[n — k]‘ <SR |hlk]|x[n— k]
Since the input is bounded |x[n] < B,. Therefore [y[n]| < B, X7__,|n[k]. Soif
> _oo|hlk] = S < o, then |y[n] < B,.S indicating that y[n] is also bounded.

To prove the converse we need to show that if a bounded input is produced by a
bounded input then S < co. Consider the following bounded input defined by

k[ o] k[ 0
x[n] = h*[=n] .Then y[n]= X hELKIAK] D |h[k]| = 5. Now since the output
[H[-n] [ 13 I
is bounded, S <. Thus for a filter with a complex impulse response is BIBO stable if

and only if ¥7__ [n[k] =S <.
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2.76

2.77

2.78

2.79

The impulse response of the cascade is g[k]= X5 _ Mk —rlhy[r]. Thus

> lgkl= % |h1[k—r]||h2[r]|s( 5 |h1[k]|j( s |h2[r]|j. Since
k=—o0 k=—

=—00 y=—00 ' =—00

hy[n] and hy[n]are stable, ¥ |hy[k]| < oand T |hy[k] < oo. Hence ¥ [g[k] < oo and asa
k k k

result, a cascade of two stable LTI systems is also stable.

The impulse response of the parallel structure is g[n] = hj[n]+ hy[n]. Now,

S |glkl= % |mlkl+mlk]< ¥ |mkl+ 3 |olk]. Since hyln] and
k=—0 k=—o0 k=—o0

k=—o0

hy[n]are stable, |h[k] <o and Y|k, [k]| < . Hence ¥|g[k]| < o and as a result, a
k k k
parallel connection of two stable LTI systems is also stable.

Consider a cascade connection of two passive LTI systems with an input x[n] and an
output y[n]. Let y{[n] and y,[n] be the outputs of the two systems for the input

Anl. Now S |wln]” < S o [xn]” and T2 _o|yoln]” < S _o|xin]’. Let
yiln] = y,[n] = x[n] satisfying the above inequalities. Then y[n] = y;[n]+ y,[n]

2 2 2
=2x{n] and as a result, >;7__ [ynl|” =435__ |xn] > Ty _|xln]". Hence, the
parallel connection of two passive LTI systems may not be passive.

Consider a parallel connection of two passive LTI systems with an input x[n] and an
output y[n]. Let y;[n] and y,[n] be the outputs of the two systems for the input

x[n]. Now Z;O:_Oo|y1[n]|2 < Zfz_oo|x[n]|2 and Z;‘f:_oo|y2[n]|2 < Zfz_w|x[n]|2. Let
yiln] = yo[n] = x[n] satisfying the above inequalities. Then y[n] = y{[n]+ y,[n]

2 2 2
=2x{n] and as a result, >5°__ [vnl|” =435__|xn]" > Z5__|xln]". Hence, the

n=—ao

parallel connection of two passive LTI systems may not be passive.

Let the difference equation > pxln—k]= y[nl+ X N_ d;yln—k] represents the
causal IR digital filter. For an input x[n] = d[n], the corresponding output is then
y[n] = h[n], the impulse response of the filter. As the number of coefficients {p;} is
M +1 and the number of coefficients {d}} is N, there are a total of N + M +1

unknowns. To determine these coefficients from the impulse response samples, we
compute only the first N+ M +1 impulse response samples. To illustrate the method,
without any loss of generality, we assume N = M = 3. Then, from the difference
equation we arrive at the following N + M +1="7 equations:

h[0] = py,
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2.80

2.81

2.82

2.83

h[11+ h[0]d, = py,
H[21+ h[11d; + H[O01d,

h[3]+ h[2]d; + h[1]d, + h[0)d> = py,

=P2>

hl4]1+ h[3]dy + h[2]d, + h[1]d, =0,
h[51+ h[4]dy + h[3]d, +h[2]d, =0,
hl6]+ h[5]dy + h[4]d, +h[3]d, = 0.
Writing the last three equations in matrix form we arrive at

Ch[41] [HI3] A2] AT dy
AIST|=| h{4] A[3] h[2]| dp
|A6] | AST A[4] R[3]]| d5

Po ho] 0 0 O
py|_| A} AIO] O O
12 h[2] A[1] A[O] O
| p3 | LAL3] AL2] A1] A[O]

yinl = y[—11+ X F_oxl 0] =y[=1]+ X7 o ful ] =y[-1]1+ X7 _o £ =y[-1]+

_ n(n+l)
==

(@) For y[-1]=0,y[n]

(b) For y[-1]=-2,y[n]=-2

0

1
d;
d2 ’
d3

+

2

} H Fll [hm h[2] h[l]}‘llh[ﬂ
=| 0|, and hence, dy | =—| h[4] h[3] h[2] h[5] |

dy AIS] h[4] h[3]] | hl6]

Substituting these values in the first four equations written in matrix form we get

n(n+1)

n(n+l) n®+n-4

2

2

y(nT) = y((n—1)T)+ ] ';T_DT x(v)dt =y((n =T )+T - x((n - 1)T). Therefore, the

difference equation representation is given by y[n] = y[n —1]+ T - x[n —1] where
y[n] = y(nT) and x[n] = x(nT).

snl = Sl = I+ afn], 01,

n

Now y[n—1]=——¥1-Ixrn>1, ie,
n—17"%=

z'g;{x[f] =(n-1)y[n—1]. Thus, the difference equation representation is given by

st =" otn =11+ Lt

y[n]1—-0.35y[n —1] = 2.4u[n] with y[—1]=3. The total solution is given by
yinl=yclnl+y,lnl, where y.[n] is the complementary solution and ypln] is the

particular solution.

y.[n] is obtained by solving y.[n]—0.35y.[n—1]=0. To thisend we set y.[n]=1",
which yields A" —0.352" ! =0 resulting in the solution A =0.35. Hence

Yelnl= a(0.35)".
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2.85

For the particular solution we choose yplnl= . Substituting this solution in the

difference equation representing the system we get f—0.358 = 2.4u[n]. For n=0 we
get B—0.35p=2.4,i.e., 1-0.35)p =2.4 and hence p =2.4/0.65=48/13.

Therefore y[n]=y.[n]+ yplnl= a(0.35)" + %, n>0. For n=-1, we thus have

y-1]1=3= oc(0.35)_1 + % implying o =—-0.2423. The total solution is thus given by

yn] = —0.2423(0.35)" + % n>0.

y[n]—0.3y[n —1]1-0.04y[n — 2] = 3" u[n] with y[-1]=2 and y[-2]=1. The total
solution is given by y[n]=y.[n] +y,lnl, where y.[n] is the complementary solution
and yplnl is the particular solution.

v.[n] is obtained by solving y.[n]-0.3y.[n—1]-0.04y.[n—2]=0. To this end we
set y.[n]=A", which yields 1" 030 _0.040%2 =0 resulting in the solutions
A=0.4 or A=-0.1. Hence y.[n]=0a(0.4)" +a,(-0.1)".

For the particular solution we choose y,[n] = B(3)". Substituting this solution in the
difference equation representing the system we get

B3)" —0.38(3)" ! —~0.04B(3)" "2 =3"u[n]. For n=0 we have

B—O.SB(3)_1 —0.04[3(3)_2 =1 which yields B =1.1166. Therefore

yinl=y.[n]+ yp[n] =a1(0.49)" + 0y (-0.1)" +1.1166(3)", n>0. For n=-1 and

n =-2 we thus have y[—1] =01 (0.4) " + a5 (-0.)" +1.1166(3)"' =2 and

M=21=01(04) 712+ 0, (-0.1)2 +1.1166(3) 2 =1. Solving these two equations we
get o; =0.5489 and a, =—-0.0255. Hence,

y[n] =0.5489(0.4)" —0.0255(-0.1)" +1.1166(3)", n > 0.

y[n]-0.3y[n—1]1-0.04y[n —2] = x[n]+ 2x[n —1] with x[n]=3"p[n], y[-1]=2 and
y[-2]=1. The total solution is given by y[n]= yelnl+y,lnl, where y.[n] is the

complementary solution and y ,[n] is the particular solution. From the solution of

Problem 2.84, the complementary solution is of the form y.[n]=0;(0.4)" + o5 (-0.1)".
c 1 2

To determine y,[n] we observe that the it is given by the sum of the particular solution

y p1[n] of the difference equation y;[n]—0.3y[n—1]-0.04y[n—2] = x[n] = 3" u[n]
and the particular solution y > [n] of the difference equation
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v [n]—=0.3y,[n-1]-0.04y,[n-2]=2x[n—-1]=2- 31 u[n —1]. From the solution of
Problem 2.84, we have y ,[n] = B(3)". Hence, Ypalnl =2y, [n-11= 2p3)" 1.
Therefore, y,[n] = y,1[n]+2y 51l =B3)" +2B(3)" " =3"un]+2-3" ' p(n-1].

For n =1 the above equation reducesto 3+ 2B =3+6. Thus, B =9/5. Therefore,
the total solution is given by

Ml = yelnl+ v, [l = 0y (0.4)" + iy (<0.1)" +§(3)” +§(3)"‘1, n>0. For n=—1
and n = —2 we thus have y[—1]= o (0.4) " + oty (<0.1)"! +§(3)‘1 + %(3)‘2 -2 and
M=21= 0 (0.4) 2 4 0y (<0.1) 2 + %(3)‘2 + %(3)‘3 — 1. Solving these two equations
we get oy =0.3413 and o, =—-0.0147. Hence,

ynl = 0.3413(0.4)" —0.0147(=0.1)" + %(3)” n %(3)"‘1, n>0.

h[n]—-0.35h[n —1] = d[n]. The solution is given by A[n] = h.[n]+ hp [n], where h.[n]

is the complementary solution and #,,[n] is the particular solution. If A[n] is the
impulse response, then h,[n]=0. From Problem 2.83 we note that #,.[n] = a(0.35)".
Thus, A[0]-0.354[—1]=h[0] =1. This implies a.=1. Hence, A[n]=(0.35)", n > 0.

The overall system can be regarded as the cascade of two causal LTI systems:
S1: y[n]-0.3y[n—1]-0.04y[n—2] = x,[n] and S2: x,[n]=x[n]+2x[n—-1].

The impulse response h;[n]of the system S1 can be found by solving the
complementary solution of A[n]—0.3h;[n—1]—-0.04h[n—2]=J[n]. Let the

complementary solution be 7;.[n] = A", we have A" 03 —0.0402 20
hence A = {0.4, —0.1}. Therefore, the impulse response hy[n] is given by

hy[n] = hy.[n] = A0.4)" + B(-0.1)",n > 0. Solving constants A, B,we get A =0.8

and B =0.2. Hence h;[n]=0.8(0.4)" +0.2(-0.1)",n >0..
The impulse response h,[n]of the system S2 is given by &, [n] = 6[n]+206[n—1]..

The impulse response h[n] of the overall system is

hn] = hy[n]* hy[n] = (0.8(0.4)” +0.2(=0.1)" ),l[n] + 2(0.8(0.4)”‘l +0.2(-0.1)" ! ),l[n 1]
= 8[n]+1.92(0.4)" ' u[n —11+0.38(-0.1)" ' ufn —1].

h[n]=(-a)"u[n], 0 < o < 1. Step response is then given by s[n] = A[n]® p[n]
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2.89

2.90

291

o0 no o)k
= ()" W[n1Op[n] = 2(—oc>ku[k]u[n—k]={zk=o< W, n=0.

n+l

I O )
- 1+a

0, n<o.

K K
A .
Let A, = At LTS Now 1im "7 Since there
n n n—owo| N
An+1 1+7"i

exists a positive integer N, such that forall n > N,, 0 < —— <——< 1. Hence

n

>o—oA, converges.

{x[n]l}={-4,5,1 -2,-3,0,2},-3<n<3,
{y[n]} =16, -3, -1, 0,8, 7, =2}, -1<n <5,
wln]}=1{3, 2,2, -1, 0, =2, 5},2<n<8.

@) ry =33 _ sxlnlx{n—1,-6<(<6.

{rlf ]}—{—8, 10, 14, —11, -23, —11, 59, —11, =23, 11, 14, 10, —8},-6 < (<6,
ryl01=32__sxnlx{n—(1,-6<(<6.

{ryy[£1} ={=12, 48, 29, =31, =30, 27, 163, 27, -30, —31, 29, 48, —12},-6 </ <6,

rowl01=28__(x{nlxln—01,-6<(<6.
{roel 01} =1{15, 4, 6, =12, 6, =2, 47, =2, 6, —12, 6, 4, 15},-6 </ <6,

(0) ryll1=%2_ sxnlyln—(],-8< /<4
{ryl01}={8, =38, 1, 51, 4, —30, —68, 43, 31, -3, —20, -6, 12},-8 </ <4,

Pl 1= 33 gxlnlyln—(1,-11</<1.
{roo[01} = {20, 33, =5, =8, =24, 7,12, 12, =7, —14, =5, 4, 6},-11</ <1,

(@) xi[nl=a’plnl. rey [00= 5 xi[nlx[n— =35 aunla ‘pin-1]

0(718

2 é 1
Zn—OLn ,ZZO, ¢ , £ >0.

1—a?
f —f
Note for 7 >0, Txx, [/]= , and for 7/ <0, Txx [/]=——. Replacing ¢ with —/

—OL OL

- , <0,
=Yoo un—1]=

—(=0) ¢
in the second expression we get r, . [—/]= ¢ - _ =1y . [¢]. Hence, r, . [/]
X1X1 1—02 1—o2 1*1 1X1
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is an even function of /. Maximum value of Teoxy [¢] occursat ¢ =0 since ol isa

decaying function for increasing when |o] < 1.

(b) x5[n [/] = Z oxz[n /], where

I, 0<n<N-1,
{O, otherwise. Now Txax,

0, for/ <—(N -1),
N+/, for—(N-1)</<0,

xz[n—ﬁ]z{é’ gé(’ftfexvi_siw’ Therefore, r ., [{]1=1 N, for/ =0,
’ ) N—-/¢, forO<N—-/<N-1,
0, for / > N —1.

It follows from the above that Txyx) [/] is a triangular function of 7, and hence is an
even function with a maximum value of N at / =0.

292 (&) x[n] _cos(Mj where M is a positive integer. Period of x;[n] is 2M , and

1 2M-1 1 2M-1 m (n+/)
hence {]=—— +/0]=— cos| — |cos
)5 St 12508 ol ool

1 M-l (ﬂnj (nnj (nfj ) (nnj (né}
= > cos| — |scos| — |cos| — |—sin sin

2M n=0 M M M M M

2M -1
el )
2M M) ,—o M
Now
2M -1 N-1 _ B
D cosz[ﬂjz 3 o (4&):1 > ( nnj :ﬂ l Z [41tn
n=0 M n=0 2 1=0 2 2, N
N-

LetC= X COS(4N j and S = Z sm( j Then C+ S = Z eJ(4rm/N)

n=0 n=

\__/

-1 L 2M-1
=—————=0. Thisimplies C=0. Thus cosz(ﬂj:E:M.
e]4n/N 1 s M >

M 194 1 14
Hence, r /] =——cos =—cos| — |.
xin L1 2M [Mj 2 (MJ

(b) {xp[nlf=(m)g =10, 1, 2, 3, 4, 5},0<n<5. Itisa periodic sequence with a
period 6. Thus, r Tayxs [/]= Zn oXa2[nlxp[n+L])g, 0< <5, Txyx) [/] is also a

periodic sequence with a perlod 6.

Ty, [0]= (x2 [0]x5 [0]+ x5 [1]x5 [1] + x5 [2]x5 [2] + x5 [3]x9 [3] + x5 [4]x5 [4] + x5 [S]x> [5])

Ty [1]= (x2 [01x5 [1]+ x5 [1]x5 [2] + x5 [2]x5 [3] + x5 [3]x5 [4] + x5 [4]x5 [5] + xo [5]x2[0]) 40 —,
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I"x2x2

)CZ)CZ [3

rxzxz

X2X2 [5

>

=~ (xp [01x2 [2] + x5 [11x5 [3] + x5 [2]x5 [4] + x5 [31x5 [5] + x [41x5 [0] + x5 [S]x5 [1])=
)=

(X2 [0])62 [3] + X2[1]X2 [4] + X9 [2])62 [5] + Xy [3])C2 [O] + Xy [4])62 [1] + Xy [5 x2 [2]

ox\»-ox\-‘0\\~ox\>—i
Méwﬁﬂ%ﬂﬁ

(x2[0]x2[4]+-x2[1}x2[5]+—x2[2]x2[0]+—x2[3]x2[1]+—x2[4]x2[2]+-x2[3]x2[4])
(x

51013 [5] + o [11x2[0] + x [21x5 [1] + x5 [31x [2] + x5 [41x5[3] + x5 [5]x, [4]) =

(c) x3[n]=(-1)" is a periodic sequence with a period 2. Thus,

rX3X3 [g] =
.X3.X3 [0]

x3x3

12,11:0x3[n]x3[n +0],0</¢<1. Hence,

(x3 (013101 + 30113 [1]) =1, 7y [1]= (x3 [01xc3[1]+ x3[1]x3[0]) = —

[/] is also a periodic sequence with a period 2.

M2.1 (a) The input data entered during the execution of Program 2_2.m are:

Type in real exponent = -1/12
Type in imaginary exponent = pi/6
Type in gain constant = 1

Type in length of sequence = 41

(b) The input data entered during the execution of Program 2_2.m are:

Amplitude

M2.2 (a) %,[n]

Type in real exponent = -1/12
Type in imaginary exponent = pi/6
Type in gain constant = 1

Type in length of sequence = 41

Real part Imaginary part
0 ?CPQ e, o
(0]
5 -0.5
3
€
< -1
-1.510
10 20 30 40 0 5 10 15 20 25 30
Time index n Time index n

¢~/04™  The plots generated using Program 2_2.m are shown below:
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Imaginary part
Real part ginary p

o g ds & LLLLLLL]

ATV f=E P

0 10 20 30 40 0 10 20 30 40
Time index n Time index n

o
Amplitude

Amplitude

(b) The code fragment used to generate x,[n] = sin(0.8mn + 0.8m) is as follows:
x = sin(0.8*pi*n + 0.8*pi);
The plot of the periodic sequence is given below:

WTTTJT

—_

0.

[$;]

Amplitude
o
o |
o |
o |
o
o |
o |
o |

-0.5

(c) The code fragment used to generate ¥ .[n] = Re(ej“”/5 )+ Im(ej“””o) is as

follows:
x = real(exp(i*pi*n/5)+ imag(exp (i*pi*n/10);

The plot of the periodic sequence is given below:

2

Tk iﬁ

SHIE b

Amplitude

-

2 . . . )
0 10 20 30 40
n

(d) The code fragment used to generate X ;[n] =3cos(1.3nn)—4sin(0.5mn + 0.57) is as

follows:
x = 3*cos(1l.3*pi*n)-4*sin(0.5*pi*n+0.5*pi) ;
The plot of the periodic sequence is given below:
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10

5,

OWT?@?H ﬁT‘P@‘FTW@
%“L Méﬂ&&&y

Amplitude

-5

-10 : \ ‘ |
0 10 20 30 40

n
(e) The code fragment used to generate
X [n]=5cos(1.5nn +0.75m) + 4 cos(0.6mn) —sin(0.57n) is as follows:
x = 5*cos(1.5*pi*n+0.75*pi)+4*cos(0.6*pi*n)-sin(0.5*pi*n);
The plot of the periodic sequence is given below:

10
%0%@1@ Tmo%@T@ Tmo
FTETIRL R R]
-5
-10 L L L |
0 10 20 30 40
n
M2.3 (a) L. = input('Desired length = ');
A = input('Amplitude = ');
omega = input ('Angular frequency = ');
phi = input ('Phase = ');

n = 0:L-1;

X = A*cos (omega*n + phi);

stem(n, x) ;

xlabel ('Time Index'); ylabel ('Amplitude');
title(['\omega_{o} = ',num2str (omega/pi), '\pi'l);

(b)

0o = 0.6m o, = 0.281
159 150 O

H H M M . gy
IR ogl ﬂmi : iﬁl

-1.5

—_

o
o w

Amplitude
Amplitude

—_

0 10 20 30 40 o 10 20 30 40
Time Index Time Index
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0, = 0.45n 0, = 0.557
1.5p O 1.5

| T T | T T
o 05 o 05
NG TTTJT [lle goéTT TWT Tl
TTRITITIT AT I
-1 A
-1.5 : : ‘ 1.5 : ‘ ‘
0 10 20 30 40 0 10 20 30 40
Time Index Time Index
030=O.657t
1.5
| T T
o 05
AN QTﬁﬂTQ :
L Il
-
1.5
0 10 20 30 40
Time Index
M24 £ = 0:0.001:1;
fo = input ('Frequency of sinusoid in Hz = ');
FT = input('Sampling frequency in Hz = ');
gl = cos(2*pi*fo*t);
plOt(t/glll_');
xlabel ('time'); ylabel ('Amplitude'); hold
n = 0:1:FT;

gs = cos(2*pi*fo*n/FT) ;
plot (n/FT,gs, 'o'); hold off

M25 t = 0:0.001:0.85;
gl = cos(6*pi*t); g2 = cos(l4*pi*t); g3 =
cos (26*pi*t) ;
plot(t/0.85,g1,'-', t/0.85, g2, '--', t/0.85, g3,':");
xlabel ('time'); ylabel ('Amplitude'); hold
n=20:1:8; gs = cos(0.6*pi*n); plot(n/8.5,gs,'o');
hold off

M2.6 As the length of the moving average filter is increased, the output of the filter gets more
smoother. However, the delay between the input and the output sequences also
increases (This can be seen from the plots generated by Program 2_4.m for various
values of the filter length.)

M2.7 alpha = input('Alpha = ');
y0O =1; y1 = 0.5*(y0 + (alpha/y0));
while abs(yl-y0)>0.00001
v2 = 0.5*(yl+(alpha/vl));
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M2.8

M2.9

y0 = y1; y1 = y2;
end
disp('Sqgure root of alpha is'); disp(yl);

format long

alpha = input('Alpha = ');

v0O = 0.3; y = zeros(1l,61);

L = length(y) - 1;

v(l) = alpha - yvO0*y0 + yv0; n = 2;

while abs(y(n-1) - y0) > 0.00001
y2 = alpha - y(n-1)*y(n-1) + y(n-1);
y0 y(n-1); y(n) = y2;
n = n+l;

end

disp('Square root of alpha is');disp(y(n-1));
m = 0:n-2;

err = y(1l:n-1) - sqgrt(alpha);

stem(m, err) ;

axis ([0 n-2 min(err) max(err)]);

xlabel ('Time index n'); ylabel ('Error');
title(['\alpha = ',num2str(alpha)l) ;

The displayed out is
Square root of alpha is
0.84178104293115

o = 0.7086
O]
0.06
0.04
; 0.02 T
i 0 Cl)@@@gou o)
-0.02 J)
-0.04
0 é 1‘0 1‘5 2‘0 25

Time index n

{x[n]}={-4, 5 1, -2, =3, 0, 2},-3<n<3,
{)’[n]}:{6, _39 _1, O, 8, 7, _2},_137[35,
wlnl}={3, 2, 2, -1, 0, =2, 5},2<n<8.

{re[nl}=1{-8, 10, 14, —11, -23, —11, 59, —11, -23, —11, 14, 10, -8}, -6<n<6.
(rylnl) ={-12, 48, 29, -31, =30, -27, 163, -27, -30, —31, 29, 48, -12},-6<n<6.

{rpylnl} ={15, 4, 6, 12, 6, -2, 47, -2, 6, —12, 6, 10, 15}, -6<n<6.
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M2.10 N = input('Length of sequence

n = 0:N-1;

x = exp(-0.8*n);

vy = rand(1,N)-0.5+x;
nl = length(x)-1;

r = conv(y, fliplr(y)
k = (-nl) :nl;
stem(k,r);

xlabel ('Lag_index') ;

) ;

ryy[nj
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vlabel ('Amplitude') ;

Not for sale.
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Not for sale.



