4.1

4.2

4.3

Chapter 4

Let ¢(¢) be an arbitrary continuous-time function with a CTFT ®(;jQ), where

D) = H)(t)e_jgtdt. Let $T(t)= §¢(t+nT) denote the periodic continuous-
—00 n=-oo

time function with a period 7' obtained by a periodic extension of ¢(z). Note that
$T(t) is also given by the convolution of ¢(z) with the periodic impulse train

)= T8(+nT), iy b= [HDp( -

Tthe CTFT of ¢ (¢) is then given by F{ o7 (1)} = ®(jQ)- F{p)}
=0GQ)- 2 T3(j@-n0p)= ¥ T(jn0p)8(i@-n0r)) (@-1)

2
where Qp :7“.

Now, the Fourier series expansion of <|~>T (1) = §¢(t +nT) isgiven by

n=—00o

$T(t) = Zanej”QTt. A CTFT of both sides of this equation is then

n=—

Florol= Sa,-2m8(j(@-nQp)) (4-2)

n=—o
Comparing Egs. (4-1) and (4-2) we arrive at a,, = %CD(anT). Substituting this

expression in the Fourier expansion of ¢ (1) we therefore arrive at the Poisson’s sum

formula ¢ (¢) = §¢(t+nT)=% %cp(anT)ef”QTt.

n=—o0 n=—0o0

Consider the continuous-time signal g, (¢) =sin(Q2,,¢) which is bandlimited to

Q,,. Ifwesample g,(r) atarate Qp =2Q,, starting at r =0, then all its samples
are zero. Hence, g,(¢) cannot be recovered from its samples obtained by sampling
it at the Nyquist rate Qr =2Q,, . Asaresult, g,(r) =sin(Q,,r) must be sampled
atarate Qp >2Q, to recover it fully from its samples.

(a) Now, the CTFT of y;(¢) is given by Y;(jQ) = %Ga (JQ)® G, (jQ) where
T
G,(jQ) denotes the CTFT of g,(z) and ® denotes the frequency-domain

convolution. The highest frequency present in y;(¢) is therefore twice that of
g, (1) and hence, the Nyquist frequency of y,(¢) is 2Q2,,,.
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4.4

(b) The CTFT of y,(¢) isgivenby Y,(jQ)= [ g, (é)e_jgtdt

=3 jga(r)e_ﬁmdr =3G,(j3Q). The highest frequency presentin y, () is

therefore one-third of that of g, () and hence, the Nyquist frequency of y,(¢) is
Q,, /3.

(c) The CTFT of y3(z) is given by Y3(jQ) = jga(3t)e_thdt

= % jga(r)e_jQ”3dr = %Ga (j%). The highest frequency present in y3(z) is

therefore three times of that of g, (#) and hence, the Nyquist frequency of y3(¢) is
3Q

m-
(d) The CTFT of y4(¢) is given by

Y (jQ) = Of { Tga (t—-1)g, (r)dr}_jgtdt = T 8a (r){ Ofga (t—r)e_jgtdt}dr

—0o0 | —00 —00 — 00

- Ofga (e TG, (jQ)dr = G, (jOQ) Tga (e ¥ a1 =G, (jQ)G,(jQ). The

highest frequency present in y4 () is therefore the same as that of g, (¢) and hence,
the Nyquist frequency of y,(z) is Q,,.

0 .
(e) Now g, (1) = zi |G, (jQ)eJQ’dQ. Differentiating both sides of this equation
T
—00

dga(t) _

w
eget =

00 .
o 172G, (jQ) e/ d0. Hence, it follows that the CTFT of
T

yﬂt)z% is simply jQG,(jQ). The highest frequency present in ys(z) is

therefore the same as that of g, (#) and hence, the Nyquist frequency of ys(z) is
Q

m-

By Parseval’s relation, the total energy of g, (¢) is given by

T 2 17 2 1 O 2
Eo, 0= [lga® dr = [|G, (/) dQ = ] |G, ([ dQ Likewise, the
-0 —00 Q

m

o0 T .12
total energy of g[n] is given by £ (1= > |g[n]|2 =% [ ‘G(ef‘”)‘ do
o et
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4.5

4.6

4.7

4.8

1 T 2 p mT 2 ;o Cm 2
=5 ‘TGa(]Q)‘ dQn)= - | G, () dQ=___ | |G, ()| dQ
-n/T -n/T -Q.
1
=+ Eg. -

Sampling period T = % = sec. Hence, the sampling frequency is

1 —_—

Fr = _=2000 Hz. Therefore, the highest frequency component that could be
T

20000

present in the continuous-time signal has a frequency =1000 Hz.

Since the continuous-time signal x, (¢) is being sampled at 2 kHz rate, the sampled
version of its i -th sinusoidal component with a frequency F; will generate discrete-
time sinusoidal signals with frequencies F;£2000n, —oo < n <. Hence, the
frequencies F;,, generated in the sampled version associated with the sinusoidal
components present in are as follows:

F =300 Hz = F,,,, =300, 1700, 2300,... Hz

Fy =500 Hz = F,,, =500, 1500, 2500, ... Hz

Fy =1200 Hz = Fj,, = 1200, 800, 3200, ... Hz

F, =2150 Hz = F,,,, =2150, 150, 4150,... Hz

F5 =3500 Hz = Fs,,, = 3500, 1500, 5500,500, 7500,... Hz

After filtering by a lowpass filter with a cutoff at 900 Hz, the frequencies of the
sinusoidal components in y, () are 150, 300, 500,800 Hz.

One possible set of values for the frequencies present in y,(¢) are: F; =350 Hz,
F, =575 Hz, F5 =815 Hz,and F; =9650 Hz. Another possible set of values for
the frequencies present in y,(¢) are: F; =350 Hz, F, =575 Hz, F5 =815 Hz,
and F, =10575 Hz. Hence, the solution is not unique.

t =nT =L, Therefore,
50
x[n]=4 sin( 207m) -5 cos( 247[”) +3 sin(lzonnj + 2005(1767[”)
50 50 50 50

= 4sin(2mj — 5005(12%) +3 sin((10+2)nnj + 2005((100_12)ij
5 25 5 25

=4 sin(zmz) -5 cos(lznn] +3 sin(zmj +2 cos((lzm )
5 25 5 25
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4.9 Both channels are being sampled at 45 kHz. Therefore, there are a total of
2 x 45000 = 90000 samples/sec. Each sample is quantized using 12 bits. Hence,
the total bit rate of the two channels after sampling and digitization is 108 kpbs.

in(Q .t in(Q.nT .
4.10 h.(1) = S Therefore, h,.(nT) = SI€QenT) - gince 7 = 21/ Qr, we have
QTt/Z QTnT
2nQ.n
sm( Q ) in(mn)
h,(nT)=——L 2 For Q, =Qy /2, we thus have &, (nT) =" — 3.
mn n
4.11 The spectrum of the sampled signal is as shown below:
Xp(jQ2)
Q

Q —
Now, 7= 2" = ™ Asaresult, o, = —"" =™ Hence after lowpass filtering
2Q,, Q, 3Q,, 3
the spectrum of the output continuous-time signal y, () will be as shown below:
Ya(jQ2)
4\ )
w09,
3 3

4.12 (a) Qp =100m, Q; =150m. Thus, AQ=Q, —Q =50n. Note AQ is an integer
multiple of Q,. Hence, we choose the sampling angular frequency as

Qr =2AQ =100m = %, which is satisfied for M =3. The sampling

frequency is therefore 50 Hz. The CTFT X ,(;€2) of the sampled sequence and the

frequency response H, (j<Q2) of the desired reconstruction filter are shown below.
Xp(j€2)
M=3
T

-200r 150 -100m -507 0 50r  100m 150 2007
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H,(jQ)

Q

-150r -1007 0 100 1507

(b) ©Qp =160n, Q =250m. Thus, AQ=Q, —Q; =90n. Note AQ is not an
integer multiple of €2,. Hence, we extend the bandwidth to the left by assuming
the lowest frequency to be QO and choose the sampling angular frequency as

Qp =200 =2(Q,-Q) = 2207

The sampling frequency is therefore 125 Hz. The CTFT X ,(;j€2) of the sampled

sequence and the frequency response H,.(jQ) of the desired reconstruction filter
are shown below.

Xp(j€2)
-340n -250m -160m  -90m on  160m 250m 340m
H,(Q)
T
Q
-250m ~160% 0 160n 250w

(c) Qp =110, Q =180n. Thus, AQ=Q, —Q; =70n. Note AQ isnotan
integer multiple of Q,. Hence, we extend the bandwidth to the left by assuming
the lowest frequency to be €3 and choose the sampling angular frequency as

Qp =240 =2(Q, Q) = 2" \which is satisfied for Qg =90 and M =2.
The sampling frequency is therefore 90 Hz. The CTFT X, (j€2) of the sampled

sequence and the frequency response H, (j<2) of the desired reconstruction filter
are shown below.

Xp(j€2)

nalnglngi

-250r -180m -110nr -70m Or 110m 180 2507w
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413

4.14

4.15

4.16

H,(Q)

—-180m -110m 0 110r  180m

a, =—-20log;o(1-8,) dBand o, =-20log;y 6, dB. Therefore,

5,=1-10"7"*and 5, =107%s /%,

(@) a,=0.21dBand ay =52 dB. Hence, 5, =0.0239 and &, = 0.025.
(b) o, =0.03dBand o, =69 dB. Hence, 5, =0.0034 and 5, =0.00355.
(c) a, =033 dBand oy =57 dB. Hence, 5, =0.0373 and &, =0.0014.

, and hence,

H,(s)=——. Thus, H,(jQ)=
s+a +a

2
|2 . . a a a .
|Ho GO = Hy GOH 4 () = ora e ot As Q increases from

0 to «o, it can be seen that the square-magnitude function |Ha(jQ)|2 and hence,

the magnitude function |Ha( jQ)| = a : decreases monotonically from

\/Q2 +a

|H,(j0)| =1 to |H,(jw)=0. Let Q. denote the 3—dB cutoff frequency. Then

2
H, Q) =—2— =1 which implies Q, = a.
Q%+a2 2
Ga(s):L. Thus, G, (jQ) =— , and hence,
s+a jQ+a
Q  -jo _ o?

. As Q increases from

.~y |2 . ;
|G0(JQ)| =G, ()G, (/) = jQ+a —jQ+a 02442

0 to oo, it can be seen that the square-magnitude function |Ga (jQ)|2 and hence,

Q
\/Qz +a?

G, (j0)|=0to |G, (joo)| =1. Let Q. denote the 3-dB cutoff frequency. Then

the magnitude function |Ga ( jQ)| = increases monotonically from

2 Qf 1 R
Ga(jQ)|" =-"¢ =, which implies Q. = a.
Qf +a 2
a 1 s—a 1 s
H,(s)= =—|1- =—(A1(5)—Ay(s)) and G, (s) =
s+a 2 s+a 2 s+a

:l[HS_aj:l(Al(sHAz(s)), where A;(s)=1 and Az(s):ﬂ. Now,
s+a 2 s+a
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4.17

A, =1 and A, (jo? = L2242 f2ma _ Jma JAHa g g
JjQ+a —jQ+a jQO+a jQ-a
values of QQ, A;(s) and A, (s) are allpass functions.
Ha(s):%, Thus, H,(jQ) = Jbg; 3 and hence,
sT+bs+Q jbQ+ Q5 —Q

b _ e
bA+Q2-0% - jpa+Q2-0?

IH (GO = Hy (GOH (- Q) =

h2Q?

= L AtQ=0,
Q2 -0%)? +p20?

H,(joo)| =0, and at

H,(jO)=0, at Q=o,

Q=0Q,, |H,(j©)| has the maximum value of 1. Now,
02 2 2 A2vo2 L o2
dlH_ (jQ _
| ad(g]) )| 2B, AV )A, + o ). It therefore follows that in the
((Qg —0?)? +b2Q2)2
(2
d|Ha(]Q)|

frequency range 0<Q < Q,, >0, and in the frequency range

dH, (o)

Q, <Q<x, < 0. Hence, in the frequency range 0 <Q < Q,,

|Ha(jQ)|2 is @a monotonically increasing function of Qand in the frequency range

Q, <Q<om, Ha(jQ)|2 is a monotonically decreasing function of Q. Or in other
words, H,(s) has a bandpass magnitude response. The 3-dB cutoff frequencies

. . b2Q2 1
are given by the solution of 5 5 5.5 =5 O
Q2-Q2)?+p*Q2 2

©2-02)2 +p202 = 20202 ik, QF —* +202)0% +0f 0. Substituting

x =02 inthe last equation we get x> — (> +20%)x+0% =0. Let x; =QF and
xy = Q3 be the two roots of this quadratic equation. Then, x;x, = Q7Q3 =Q*
and x| +x, = le +Q% = p? +2Q%. Therefore, Q;Q, = Q%. From the last two
equations we get Q7 + Q3 —20,Q, =(Q, -0Q)? =b? +202 -202 =p2.
Hence, Q, —Q =b.
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4.18

4.19

2 2 2 2
+Q Q-0
%. Thus, G,(jQ) = o 5 5 and hence,
sT+bs+Q JjbQ+Qy —Q
02 -0? 02-0?
pA+02-0% — jp+02 -2

Ga(s) =

GG = G (G, (-jQ) =

_ (©@-0%)
Q2 -0%)% +p%0?

Note |G, (jO)| = |G, (joo) =1 and |G, (jQ,)| = 0.

. It therefore follows that in the

. 2
o dG,(jQ)” 20203 Q% -02)
dQ (@3 a2y +b292)2

diG, (O

frequency range 0< Q< Q,, <0, and in the frequency range

dG,(jo)

Q, <Q<om, > 0. Hence, in the frequency range 0 <Q < Q,,

|Ga (jQ)|2 is a monotonically decreasing function of Q and in the frequency

range Q, <Q<w, |G, (jQ)|2 is a monotonically increasing function of Q. Orin

other words, G, (s) has a bandstop magnitude response.
. . : Q5 -02)? 1
The 3-dB cutoff frequencies are given by the solution of =,
Q5 -02)2+b%07 2
or, 202 -02)2 =2 -02)2 +b%02 ik, of - +205)0% + 0 0. This
last equation is exactly the same as in solution of Problem 4.18 from which we get
0,0, =02 and Q, —Q = b.

2 2
—bs+Q
H (S):L:l 1_$ :l(A (s)— A (s)) and
a 2 2 2 2 1 2
s“+bs+Q5 2 s“+bs+Q5 ) 2

s2+Qg +s2—bs+Qg

1

G,(8)=——"—F=—
¢ s2+bs+Q% 2 s2+bs+Q(2,

2

2

= %(A1 (5)+ Ay (s)), where

—bs +Qg
s +bs+Qg
—0% - jbQ+ Q7 —QF + jbQ+ Q7
0%+ jpQ+ Q2 —Q% - jpQ+ O3
Q, A(s) and A, (s) are allpass functions.

A(s)=1and Ay(s)= . Now, |4, (j)| =1 and |4, (jO)

= Ay (JQ)Ay (—jQY) = =1, for all values of
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4.20

421

4.22

(a) Let A;(s)= SF

P o
L. Since the pole of A;(s) is strictly in the left-half s —plane
A
and hence, A, (s) is causal and stable. Now |A;( jQ)|2 = A; GA! (jO)

Q+N; —jQ+A;  JQ+N jQ-), .
=], bk’ St ;zj i J —=1. Hence, A;(s) is an allpass
JQ=Ni —jQ-x; JQ=Ai jQ+);

N

function. Since, A(s)= [1A4;(s), itis a product of causal, stable allpass functions,
i=1

and as a result, is also a causal, stable allpass function.

* 2 2
2 S+N; SEAN; s|” + N7 +2Re{sA;}
(b) |4;(9)]” = Ai(9)A; () = - = |2| | 12| —. Let
S=hi s* - Is| 7 +A|” —2Refs* ;)
o ] 20, ) +20a;
s=0+jQ and A; =a; + jb;. Then |A (s )|
(s? +ri* —290;) — 20a;
Since a; <0, it follows from the above that |A; (s)|
for o =0, and |Al-(s)|2 >1 for 6<0.
|Ha(jQ)|2 = ! 5 Define D(Q)=%=1+(Q/QC)2N. It
1+(Q/Q,) H, ()
k 2N—k
follows then d D(kQ) =2NQ2N -1)---(2N - k+l)Q . Therefore,
dQ 0?2
d* D) . d*|H , (jO)
P =0 for k=1,2,...,N —1, or, equivalently, — 0
dQ Q=0 dQ Q=0

for k=1,2,....N —1.

101og10( ): —0.25. Therefore, &2 =10%0% —1=0.0593. Next, from

+
101og Lo 0s we get A2 =10>5 = 3162278, Now, + = £y =i=4
Ol a2 k Q, LS5
2
logo(1
and — A Lo 2152278 _ 5 9381, Hence, N = logio@/kD) _ 5 ho43,
0.0593 logo(1/k)

We choose N =4 as the filter order.

To verify using MATLAB, we use the code fragment
[N,Wn]=buttord(2*pi*1500,2*pi*6000,0.25,25,"'s"');
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whichyieldsN = 4andwn = 18365.51286.

4.23 The poles are givenby p, = e/*C+297 1 <1 < 6. Hence,
pr =e/7™12) = 02588+ j0.9659, py = /O™12) = _0.7071+ j0.7071,
p3 = /O™ = 09659 + j0.2588, p, =/ MT12) = px = _0.9659 — j0.2588,

ps =/ B2 = px 07071 - j0.7071, pg = /112 = p* = _0.2588 — j0.9659.
The poles can also be determined in MATLAB using the statement
[z,p,k]=buttap (6) which yields

p:
-0.2588 + 0.96591
-0.2588 - 0.96591
-0.7071 + 0.70711
-0.7071 - 0.70711
-0.9659 + 0.25881i
-0.9659 - 0.25881

4.24 From Eq. (4.41) of text, Ty () =2QT N _1(Q)—Ty_»(€2), where Ty () is defined in Eq.
(4.40).

Case 1: | <1. Making use of Eq. (4.40) in Eq. (4.41) we get

Ty (Q)= ZQcos((N -1)- cos ! Q)— cos((N -2)- cos ! Q)
=2Q cos(N cos ' Q—cos! Q)— cos(N cos ' Q—2cos7! Q)
=2Q|cos(N cos ™! Q) cos(cos_1 Q) +sin(N cos ™! Q) sin(cos_1 Q)J

- [cos(N cos ™! Q)cos(2 cos ™! Q) +sin(N cos ™! Q)sin(2 cos ™! Q)J

=2Qcos(N cos ™! Q) cos(cos_1 Q) —cos(N cos ™! 0Q)cos(2 cos ™! Q)
=202 cos(N cos ™! Q) —cos(N cos ! Q)|_2 cos? (cos_1 Q)— IJ
= cos(Ncos_1 Q)IZQ2 207 + IJ: cos(N cos ™! Q).

Case 2: |© > 1. Making use of Eq. (4.40) in Eq. (4.41) we get

Ty (Q)=2Q cosh((N -1)- cosh™! Q)— cosh((N -2)- cosh™! Q) Using the trigonometric
identities

cosh(A — B) = cosh(A) cosh(B) — sinh(A)sinh(B), sinh(2A) = 2sinh(A)cosh(A), and
cosh(2A) = ZCoshz(A) —1,and following a similar algebra as in Case 1, we can show
Ty (Q) = cosh(N cosh™! Q).

4.25  From the solution of Problem 4.22, we have % =4 and ki =72.9381. Hence,
1
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-1
N = cosh " (1/k;)

cosh™! (1/k)
The filter order obtained using the MATLAB statement
[N,Wn]=cheblord(2*pi*1500,2*pi*6000,0.25, 25, 's') resultsinN=3.

=2.4151. We choose the filter order as N =3.

! 5 ] =-0.25, which yields € =0.2434.  10log (iz] =-25, which
A

4.26 IOIOglo(
1+¢

0
r 1500 _ 495 and ky =

Q, 6000

e 02434
Ja2_1 3152278

yields A2 =316.2278. Now, k =

=0.0137. Substituting the value of £ in Eq. (4..55a) we get k" = 0.9682. Then from Eq.
(4.55b) we get py =0.004. Substituting the value p in Eq. (4.55c) we get p = 0.004.

Finally, from Eq. (4.54) we arrive at N =2.0591. We choose the next higher integer as the
filter order N =3.

The filter order obtained using the MATLAB statement
[N,Wn]l=ellipord(2*pi*1500,2*pi*6000,0.25, 25, 's') resultsinN=3.

4.27 By(s)=@2N—-1)By_;(s)+s>By_o(s), where By(s)=s+1 and By (s) = s> +3s5+3.
(a) Thus, B3(s)=5By(s)+s°By(s)=5(s% +3s+3)+s2(s+1) = s> + 65> +155 +15,
By(s) =7B3(s)+52By(s) =7(s> +65% +155+15)+ 52 (s> +35+3)
=s% +10s% + 4552 +1055 +105.
(b) Bs(s) = 9B4(s)+5>Bs(s) = 9(s* +10s> + 4552 +1055 +105) + 5% (s> + 652 +155 +15)
=52 +155% 11055 + 42052 + 9455 + 945.

QpQ), _4n*x0.72

K S

428 Q,=2nx024 and O, =27nx3. The mapping is thus s =

Denote K = 4n” x0.72 = 28.4245. Hence, the desired highpass transfer function is given

. 10
by Hpp$)=Hp () _g 15 =3 2
K K K
[) + 4.309() ¥ 9.2835() +10
S S S
~ 1053 ~ 1083
K3 +4309K2%5+9.2835K5% +105° 108> +263.878532 +3481.55+ 22966

§3

$3 +26.3878532 +348.155+ 2296.6

Denote

A Q.0 2
429 Q, =21x0.9 and O, =2rnx3. The mapping is thus s = —— = 4n f2‘7.
S S

K =4n% x2.7=106.5917. Hence, the desired lowpass transfer function is given by
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Hpp(s)=Hpp(s) _g ;s = )3 K\? K
K 238 5| +40.087 = |+100
() + (s] " (S]+

S
1(3
K3 4+9.238K25 +40.087K52 +1005°
12110.735
33 +42.72952 £1049.6023 +12110.735

A A A

430 Q) =21x0.25=0.57, Q, =2nx3 =67, Q ,, —Q,; =2n(0.5) =n. The mapping is thus

2 . A2 a2 2 a2 2
+Q
PO s MY [ L R L
S(Qp2 —Qpp) TS 2s

2
~2 2
0.01 [”236“) +367.93

N

2
~2 2 A2 2
(”36"} + 2.269(”5“} +3.895

Hpp($)=Hpp (s)|s:(§2 +36m2)/25

A N

N S

~ 0.01(5% +2182.335% +126242.18)
§% +4.5385% +726.195% +1612.385 +126242.18

431 O, =21x6.5x10" and O  =2nx1.5x10°.

1Olog10( ! j: -0.5, and hence, g2 =109 _1=0.122.
1+¢2
1 2 4 1 A*-1
1010g10[2J =—40, and hence, A“ =10". Therefore, P = 286.2632.
A 1 €
Q Q
Set Q, =1. Then Q _o 05 B e Lo L e order of the
G, 15 3 Kk Q, 3
lOglO (l/kl)

prototype lowpass filter is thus given by N = =3.8579. Asaresult, we

logio(1/k)
choose the filter order asN = 4.
The order of the prototype lowpass filter obtained using the MATLAB statement
[N,Wn]=buttord(1,13/3,0.5, 40, 's') resultsinN=4.
The order of the desired highpass filter is also 4.

A

432 F

1 =20x107, Fp =45x10%, Fy; =10x10°, and Fyy =50x10°. Thus,

Not for sale 97



Fp Fyy =9x10% and Fy Fyy =7.5x10%. Since £, F,y > Fy Fyy, we can either
increase left stopband edge I:“sl or decrease the left passband edge ﬁpl to make
Fy,1F,y = Fy Fyy. We choose to increase Fy; to anew value given by £y =18x10°, in
which case ﬁplﬁ‘pz = F F, = f«’oz =9x108. The center angular frequency of the
bandpass filter is therefore f)o =21x30x10>. The passband width is

2 2 3
B, :Qpl —Qp2 =2nx25%10".
To determine the bandedges of the prototype lowpass filter we set €2, =1 and thus,

02 -0%4  30%-182

Q, =0, = =1.28.
Qg By, 18x25
Q, 1 \ 2
Now, k = =——=0.78125. Hence, k'=v1—-k“ =0.62421826.
Q, 128
1

Next, 10 loglo( 5 J =—0.25 or equivalently, log;o (1 + ¢2)=0.025 which yields

1+¢

2 =10%9% _1-0.059253725 or & =0.243421. Likewise, 10 1og10(LJ =50

A2
or, equivalently, loglO(Az) =5 which yields A% =10° =100000. Therefore,
kj =———— =7.69768x 1074, pg = Y =0.058635856. Asaresult,

Ja2 _1 21+ k')

p=po +2(po)> +15(pg)° +150(pg)'® =0.058637246. Hence,
N = 210g10(4/k1)

logo(1/p)
filter.
Note that the order can also estimated using the specifications of the bandpass filter. To
this end, the statement to use is
[N,Wn]=ellipord([20 45],[15 50],0.25,50, 's") which also yields N=7 as
the order of the prototype lowpass filter. The order of the desired bandpass filter is
therefore 7x2 =14.

=6.0328. We choose N =7 as the order of the prototype lowpass

4.33 F, =10x10°, F,p =70x10°, Fy; =20x10°, and £y, =45x10°. Thus,
FpiFpy =70x10" and £y Fiy =90x103. Since £, F,y < Fy Fyp, we can either
increase left passband edge ﬁpl or decrease the left stopband edge 1:}1 to make

FF,y = FyFy. We choose to increase £,y to a new value given by
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FpFyy = ;{ 2 = 12.8571x10°, inwhich case F, Fy = Fy Fyy = Fy =700x10'%
p2

The width of the stopband is B,, = Q,, — €, =21 x25x10% and the center angular

frequency of the stopband is Q2 = 472 x700x10'2.
To determine the bandedges of the prototype lowpass filter we set Q =1 resulting in its

A

Qple
passhand edge Q , =Q, 5 Ay 0.4375.
Q5 —Qpl
Now, 10 10g10( 5 j =—0.5 or equivalently, log;q (1 + &%) =0.05 which yields
I+¢

L 1
e2 =10%%° —1=0.1220184543 or £ =0.349114. Likewise, 10 1og10[—2j =-30
A

or, equivalently, log;o(A?) =3 which yields A% =10 =1000. Therefore,

‘ 2 —_— A
L £ L 2.2857 and Lz A7l = 999 =90.4836236.
k€, 04375 ky € 0.349114

Substituting the values of % and ki in Eq. (4.43) we get
1

_ cosh ™1 (90.4836236)

cosh™1(2.2857)
prototype lowpass filter. The order of the desired bandstop filter is thus 8.
Using the statement [N, Wn]=cheblord(0.4375,1,0.5,30, 's"') we get N=4.
Note that the order can also estimated using the specifications of the bandstop filter. To
This end, the statement to use is
[N,Wn]=cheblord([10 701, [20 45],0.5,30, 's"') which also yields N=4 as
the order of the prototype lowpass filter.

N =3.5408. We therefore choose N =4 as the order of the

4.34 From Eq. (4.71), the difference in dB in the attenuation levels at €2, and Q is given by
20N log;o(€2,, /€Qy). Hence, for Q, =2Q ,,
20N logo 2 =6.0206N. Likewise, for Q, =3Q ,, the attenuation difference in dB is
equal to 20N logjo 3 =9.5424N. Finally, for Q, =4Q ,, the attenuation difference in
dB is equal to 20N logy 4 =12.0412N.

the attenuation difference in dB is equal to

4.35 The equivalent representation of the D/A converter of Figure 4.48 reduces to the circuit
shown below if j-th bit is ON and the remaining bits are OFF, i.e., a; =1and

ak:O,k;tj.
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> Y;
In the above circuit, Y;, is the total conductance seen by the load conductance G; which is

N-1 .
givenby v, = ¥ 2' = 2N 1. The above circuit can be redrawn as indicated below:
i=0

0 VO,j
2i-1 Yip—2/71 G,
+ y /s
(lj VR
7z
. y . 2J-1 .
Using the voltage-divider relation we then get V,, ; = mﬂjVR. Using the

in L

superposition theorem, the general expression for the output voltage V,, is thus given by

N 9i-l N . R
V0= Z—-ajVRz Z2J 1aj( L JVR

j=1Yin G j=1 1+2N -DR;

4.36 The equivalent representation of the D/A converter of Figure 4.49 reduces to the circuit
shown below on the left if N -th bit is ON and the remaining bits are OFF, i.e., a) =1and

aj = 0,k=N,
o Vo,N Vo,N
g G G G
2 2 GL 2 GL+ E
A7 + / + v
aNVR CZNVR

pe

which simplifies to the circuit shown above on the right.

Using the voltage-divider relation we then get

G

= RL
V N:#aNVRz—aNVR
o %Gﬁg 2R+R;)

The equivalent representation of the D/A converter of Figure 4.49 reduces to the circuit
shown below on the left if (N —1)-th bit is ON and the remaining bits are OFF, i.e.,

an_q =1land ay =0,k=N-1,
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4.37

AN o VoN-1 VAN o Vo, N-1
G G G GQ ¢ G
+ /J7 / + <
ay_1Vg an_1Vg

7
which simplifies to the circuit shown above on the right.

Its Thevenin equivalent circuit is indicated below:

Vo,N-1
g G, + (—2;
aj\é_l Vi i— ’
from which we readily obtain i
v % AN-1y, o Ry aN-1y,

oN-17GrG, 2 RTaR +R) 2
Following the same procedure we can show that if the ¢—th bit is ON and the remaining
bits are OFF, i.e., ay =1,and a; =0, k = ¢, then
Ry ay
VvV = . Vp.
ol "R, +R) oN—1 K

Hence, in general we have
_ g RL ) ay %
Z12(R, +R) N0 K

o

From the input-output relation of the first-order hold, we get the expression for the impulse

response as h ¢ (t) = 8(nT) + S(nT) - 3(nT ~T)

(t—nT),nT <t<(n+1T. Inthe range

0<7<T, the impulse response is given by % (r) = 5(0) + 1+—

0(0)—0o(-T) - t
T T

Likewise, in the range T < < 2T, the impulse response is given by

hy(t)=08(T) +w(t -T)=1 —%. Outside these two ranges, hy (1) =0. Hence we

have
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hy(1)

2..
t
1+—, 0O0gt<T,
T |
t
he()=\1-—, Tgt<?2T,
r® T
0, otherwise. ) ,
0 72T
_1.

Using the step function we can write

hy ()= (1 ' %j[u(t) -+ (1 —%)[u(r ~T)—p(r—27)]

2(t-T) (t-2T)
T T

w(t —2T) +2u(t - 27).

— () + %u(t) - Wt —T) = 2u(t = T) — p(t - 2T) +

Taking the Laplace transform of the above equation we arrive at the transfer function

2
—sT —sT -2sT -2sT -2sT __—sT
Hf(s)=lJr L 27 7 e L Y =[1+8Tj1 e .
S Ts2 T s2 s s T S2 B T

S

Hence, the frequency response is given by

. 2
; __—jQT . 2 . L
Hf(jQ):[H]QTJ{I e ] ., /71+Q2T2[2sm(m/2)j T junar A

T jQ QT /2
plot of the magnitude responses of the zero-order hold and the first-order hold is shown
below:
15 /\\
é 1 \ \(— first-order hold
§0_5 \izero-orde/rid
\‘ A
0 ‘ \\/ ‘ \A

0 0.5 1 1.5 2 25 3
Q

4.37  From the input-output relation of thelinear interpolator, we get the expression for the
onT) — i(”T “D) (4T, nT <1 < (n+DT. Inthe

impulse response as /(1) = 8(nT —T) +

range 0 <7 <7, the impulse response is given by 7 (1) = 8(-T) +Wz. Likewise,
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inthe range 7 <t < 2T, the impulse response is given by /(1) = 3(0) +w

(t=T).
i, 0<r<T,
T

Outside these two ranges, hf (r) = 0. Hence we have hyp(t)=142 —%, T <t<?2T,

0, otherwise.

hy(0)

0 T 2T
Using the step function we can write
t t
hy(t) = ?[u(t) - =17)l+ (2 - ?)[M(I —T)—p(r=27T)]

Z(t_T)p(t—T)+(l_2T)

- %u(t) - u(r —27).

Taking the Laplace transform of the above equation we arrive at the transfer function

1 2e_ST e_2ST 1_e_S
Hf(S)I > - 3 + > =T
s°T s°T s°T sT

2
T
j . Hence, the frequency response is given

i QT /2
responses of the ideal filter, zero-order hold and the first-order hold is shown below:

7\ 2
T - 2
by H ¢(j€2) = T(%] = T(Mj ¢ 7T A plot of the magnitude

1
\\
0.81 \\\(— zero-order hold
3 \
2 0.6 '\« linear interpolator
£ o4} W\
L \\ 7
0.2 \\\ /_\\\ — \
0 ANV . :
0 05 1 15 2 25 3
Q

M4.1 WeuseN = 4andwWn = 18365.512865 computed in Problem 4.22 and use omega
= 0:2*pi:2*pi*10000; to evaluate the frequency points. The gain plot obtained using
Program 4_2 is shown below.
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M4.2 We use N

Analog Lowpass Filter

Gain, dB

40
0 2000 4000 6000

Frequency, Hz

8000

10000

Gain, dB

3 computed in Problem 4.23 and Fp

Passband Details

1000
Frequency, Hz

1500 2000

2*pi*1500 and Rp

2500

0.25

and use omega = 0:2*pi:2*pi*10000; to evaluate the frequency points. The gain plot
obtained using Program 4_3 is shown below.

Analog Lowpass Filter

replace [num, den]

chebyl (N,Rp, Fp, 's') ; with

Passband Details

[num, den]

cheby?2 (N,Rs,Fs, 's"') ; to modify Program 4_3.
Next, we run the modified program using N = 3 and Rs = 25, and Fs = 2*pi*6000. The
gain response plot generated by the modified program is shown below.

Not for sale

0-5 T T T
o] I A S
[an] m | | |
© © |
c c : : I
© ,m | | |
© 705 IR IR A
0 4 l l l
0 2000 4000 6000 8000 0 500 1000 1500 2000
Frequency, Hz Frequency, Hz
M4.3 We replace the statement
Fp = input ('Passband edge frequency in Hz = '); with
Fs = input ('Stopband edge frequency in Hz = ') ; replace
Rp = input('Passband ripple in dB = ');
WithRs = input('Minimum stopband attenuation in 4B = '); and
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Analog Lowpass Filter Passband Details

-10

-20

Gain, dB

-30

-40

-50

T

F-eq-—-

|
|
T
|
|
4
|
|
|

|
|
|
T
|
|
1

Gain, dB

0 2000 4000 6000

Frequency, Hz

8000

1000
Frequency, Hz

1500 2000 2500

The numerator and the denominator coefficients of the 3 order Type 2 Chebyshev lowpass
filter can be obtained by typing num and den in the command window:

10138.1864 52 + 4.8663294 x 1010
53 +7030.255525 5% +2.4198332254 x 107 5 + 4.8663294 x 1010

Hyp(s)=

M4.4 WeuseN = 3andWn = 9424.777960769379 computed in Problem 4.26 in
Program 4_4 and use omega = [0: 200: 12000*pi]; to evaluate the frequency points. The
gain plot generated by running this program is shown below:

Analog Lowpass Filter Passband Details

0.5 | | |
4 U SR T
% % : | :
’ R R
& ; | : :
0 1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000
Frequency, Hz Frequency, Hz
M4.5 The MATLAB program used is as given below:
[N,Wn]=buttord(1,13/3,0.5, 40, 's');
[B,A] = butter(N,Wn, 's');
[num,den]=1p2hp (B,A,2*pi*6500) ;
figure (1)
[h,w]l=fregs(B,A) ;gain = 20*1ogl0 (abs(h));
plot (w,gain) ;grid
xlabel ('\Omega') ;ylabel ('Gain, dB');
title('Analog Lowpass Filter');
figure(2)
[h,w]=fregs (num,den) ;gain = 20*1ogl0 (abs(h)) ;
plot(w/ (2*pi),gain) ;grid
xlabel ('Frequency, Hz');ylabel ('Gain, dB');
title('Analog Highpass Filter');
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3.5262257

Hip(s)=— 3 2 ’
s +3.580864325” +6.41129464s” +6.72423556 s + 3.5262257
s4
Hup($)=— 3 92 13 17
s +7.7880s” +3.0326485x107 s +6.91763168 x10 " s +7.8897418 x 10
Prototype Lowpass Filter Passband Details
of

0 IS TN SN S S
m 1 n
S 200 e N R R, °
3 | 5
S 30~ N 5

'40”””L””’T””’T””’T *****

50 | | | |

0 1 2 3 4 5
Q
Analog Highpass Filter
3 L | 3
o :
O 30F--f---"------- ro—m—m - === 5
‘1 1.‘5 2
Frequency, Hz x 10* Frequency, Hz x 10*

M4.6 The MATLAB program used is given below:
[N,Wn] = ellipord(1,1.28,0.25,50,'s");
[B,A] = ellip(N,0.25,50,Wn, 's"');
[num,den] = lp2bp(B,A,2*pi*30e3,2*pi*25e3);

figure(l)

omega = [0:0.01:107;

h = fregs (B, A, omega) ;

gain = 20*logl0(abs (h));

plot (omega,gain); grid; axis ([0 5 -80 5]1);
xlabel ('\Omega'); vylabel('Gain, dB');
title('Analog Lowpass Filter');

figure(2)

omega = [0:200:100e3*2*pi];
h = fregs (num, den, omega) ;
gain = 20*logl0(abs (h));
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plot (omega/ (2*pi) ,gain); grid; axis([0 60e3 -80 5]);
xlabel ('Frequency in Hz'); vylabel('Gain, dB');
title('Analog Bandpass Filter');

Analog Lowpass Filter Analog Bandpass Filter
777777 R R 0 : ‘ ‘ :
|
|
e 20
|
3 | 3
S A40F - +omm - £ -40
@ | | T
(O] ! [ O]
I |
Lo // ,,,,,, -60
| | | | |
| | | | |
| | | | |
| _80 1 | | |
0 4 5 o 1 2 3 4 6
Frequency in Hz x 10*

0.0185s° +0.13645% +0.2887s2 +0.186835
HLP (S) =

s7 +1.364265° +2.979555 +2.75455% +2.70025s3 +1.56215s2 +0.72755 + 0.1868

The numerator and denominator coefficients of can be obtained by typing num and den in
the Command Window.

M4.7 The MATLAB program used is given below:

[N,Wn] = cheblord(0.3157894, 1, 0.5, 30,'s"');

[B,A] = chebyl(N,0.5, Wn,'s");

[num,den] = 1p2bs(B,A,2*pi*sqgrt(700)*1076, 2*pi*15e6) ;
figure (1)

omega = [0:0.01:107];

h = fregs (B, A, omega) ;

gain = 20*1logl0(abs (h));

plot (omega, gain); grid; axis([0 4 -70 5]);

xlabel ('\Omega'); vylabel('Gain, dB');

title('Analog Lowpass Filter');

figure(2)
omega = [0:10000:160e6*pi];
h = fregs (num, den, omega) ;

gain = 20*1logl0(abs (h));

plot (omega/ (2*pi), gain); grid; axis([0 80e6 -70 51);
xlabel ('Frequency in Hz'); ylabel('Gain, dB');
title('Analog Bandstop Filter');

0.02253823
53 +0.395656652 +0.1530643s + 0.02253823

Hyp(s)=
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Gain, dB

Gain, dB

Analog Lowpass Filter

Passband Details
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Frequency in Hz

8

x 107 Frequency in Hz

M4.8 The MATLAB program to generate the plots of Figure 4.56 is given below:

% Droop Compensation

w = 0:p1/100:p1;

fregz([-1/16 9/8

_1/16] /1/W)I'

h2 = fregz (9, [8 11, w);

wl = 0;

for n = 1:101;
h3(n) = sin(wl/2)/(wl/2);
wl = wl + pi/100;

end

ml = 20*1logl0O(abs(hl));

m2 = 20*1ogl0O(abs(h2));

m3 = 20*1ogl0O(abs(h3));

plot(w/pi,m3, ' -,

xlabel (‘Normalized frequency’) ;ylabel (Gain,

w/pi,ml+m2, '--',w/pi,m2+m3, '-."') ;grid

dB’) ;
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