
Chapter 4 
 
4.1 Let  be an arbitrary continuous-time function with a CTFT )(tφ ),( ΩΦ j  where 

  Let denote the periodic continuous-

time function with a period T  obtained by a periodic extension of   Note that 
 is also given by the convolution of 
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Now, the Fourier series expansion of   is given by 

   A CTFT of both sides of this equation is then  
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Comparing Eqs. (4-1) and (4-2) we arrive at ).(
1

TTn jna ΩΦ=   Substituting this 

expression in the Fourier expansion of )(
~

tTφ  we therefore arrive at the Poisson’s sum 
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4.2 Consider the continuous-time signal )sin()( ttg ma Ω=  which is bandlimited to 

  If we sample  at a rate .mΩ )(tga mT Ω=Ω 2  starting at 0=t , then all its samples 
are zero.  Hence,  cannot be recovered from its samples obtained by sampling 
it at the Nyquist rate 

)(tga

mT Ω=Ω 2 .  As a result, )sin()( ttg ma Ω=  must be sampled 
at a rate  to recover it fully from its samples. mT Ω>Ω 2

 

4.3 (a)  Now, the CTFT of  is given by )(1 ty )(O)()( *
2
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 denotes the CTFT of   and  denotes the frequency-domain 

convolution.  The highest frequency present in  is therefore twice that of 
 and hence, the Nyquist frequency of  is 
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 (b)  The CTFT of  is given by )(2 ty dtegjY tjt
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  The highest frequency present in  is 

therefore one-third of that of  and hence, the Nyquist frequency of  is 
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(d)  The CTFT of  is given by 
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highest frequency present in  is therefore the same as that of  and hence, 
the Nyquist frequency of  is 
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4.4 By Parseval’s relation, the total energy of  is given by 

E

)(tga

Ω∫ Ω=∫=
∞

∞−π

∞

∞−
djGdttgt aaga

2

2

12
)()()(  .)( 2

2

1 Ω∫ Ω=
Ω

Ω−π
djG

m

m

a   Likewise, the 

total energy of  is given by E ][ng ω∫=∑=
π

π−

ω
π

∞

∞−
deGng j

ng
2

2

12
][ )(][  

Not for sale 87



 Ω∫ Ω=Ω∫ Ω=Ω∫ Ω=
Ω

Ω−π

π

π−π

π

π−π
djGdjGTdjG

m

m

aT

T

T
aT

T

T
aT

2

2

1/

/

2

2

1/

/

21

2

1
)()()()(  

 
T

1= E  .)(tga

 

4.5 Sampling period ==
5000

5.2
T  sec. Hence, the sampling frequency is 

20001 ==
TTF  Hz.  Therefore, the highest frequency component that could be 

present in the continuous-time signal has a frequency 1000
2

20000
=  Hz. 

 
4.6 Since the continuous-time signal  is being sampled at  kHz rate, the sampled 

version of its -th sinusoidal component with a frequency  will generate discrete-
time sinusoidal signals with frequencies 

)(txa 2

i iF

.,2000 ∞<<∞−± nnF i   Hence, the 
frequencies  generated in the sampled version associated with the sinusoidal 
components present in are as follows: 

imF

 
3001 =F  Hz K,2300,1700,3001 =⇒ mF Hz 
5002 =F  Hz K,2500,1500,5002 =⇒ mF Hz 
12003 =F  Hz K,3200,800,12003 =⇒ mF Hz 
21504 =F  Hz K,4150,150,21504 =⇒ mF Hz 
35005 =F  Hz K,7500,500,5500,1500,35005 =⇒ mF Hz 

 
After filtering by a lowpass filter with a cutoff at 900  Hz, the frequencies of the 
sinusoidal components in  are  Hz. )(tya 800,500,300,150

 
4.7 One possible set of values for the frequencies present in  are:  Hz, 

 Hz,  Hz, and 
)(tya 3501 =F

5752 =F 8153 =F 96504 =F  Hz.  Another possible set of values for 
the frequencies present in  are: )(tya 3501 =F  Hz, 5752 =F  Hz,  Hz, 
and  Hz.  Hence, the solution is not unique. 

8153 =F

105754 =F
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4.9 Both channels are being sampled at  kHz.  Therefore, there are a total of 

 samples/sec.  Each sample is quantized using 12  bits.  Hence, 
the total bit rate of the two channels after sampling and digitization is 108  kpbs. 

45
90000450002 =×
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4.11 The spectrum of the sampled signal is as shown below: 
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4.12 (a)  .150,100 11 π=Ωπ=Ω   Thus, .5012 π=Ω−Ω=∆Ω  Note  is an integer 

multiple of  Hence, we choose the sampling angular frequency as 
∆Ω

.2Ω

,1002
1502

MT
π×=π=∆Ω=Ω  which is satisfied for .3=M  The sampling 

frequency is therefore 50  Hz.  The CTFT )( ΩjX p of the sampled sequence and the  

 frequency response )( ΩjHr  of the desired reconstruction filter are shown below. 
X  (jΩ)p
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Ω

T

H  (jΩ)r

0 100π 150π100π_150π_  
 

(b)    Thus, .250,160 11 π=Ωπ=Ω .9012 π=Ω−Ω=∆Ω  Note  is not an 
integer multiple of  Hence, we extend the bandwidth to the left by assuming 
the lowest frequency to be 

∆Ω
.2Ω

0Ω   and choose the sampling angular frequency as 

,)(22
2502

02 MT
π×=Ω−Ω=∆Ω=Ω  which is satisfied for π=Ω 1250  and  .2=M  

The sampling frequency is therefore 125  Hz.  The CTFT )( ΩjX p of the sampled 

sequence and the frequency response )( ΩjHr  of the desired reconstruction filter 
are shown below. 
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(c)    Thus, .180,110 11 π=Ωπ=Ω .7012 π=Ω−Ω=∆Ω  Note ∆Ω  is not an 
integer multiple of  Hence, we extend the bandwidth to the left by assuming 
the lowest frequency to be 

.2Ω

0Ω   and choose the sampling angular frequency as 

,)(22
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02 MT
π×=Ω−Ω=∆Ω=Ω  which is satisfied for π=Ω 900  and   

The sampling frequency is therefore  Hz.  The CTFT 
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90 )( ΩjX p of the sampled 

sequence and the frequency response )( ΩjHr  of the desired reconstruction filter 
are shown below. 
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4.13  dB and )1(log20 10 pp δ−−=α ss δ−=α 10log20  dB.  Therefore, 

and   20/
101 p

p
α−

−=δ .10 20/s
s

α−=δ

(a)   dB and 21.0=α p 52=αs  dB.  Hence, 0239.0=δ p  and  .025.0=δs

(b)   dB and 03.0=α p 69=αs  dB.  Hence, 0034.0=δ p  and  .00355.0=δs

(c)   dB and 33.0=α p 57=αs  dB.  Hence, 0373.0=δ p  and  .0014.0=δs
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1)(1 =ΩjA  and 1)(
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2)( ΩjHa  is a monotonically increasing function of Ω and in the frequency range 

,∞<Ω<Ωo
2)( ΩjHa  is a monotonically decreasing function of   Or in other 

words,  has a bandpass magnitude response.  The –dB cutoff frequencies 

are given by the solution of 
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 in the last equation we get   Let  and 

 be the two roots of this quadratic equation.  Then,  
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or,  i.e.,  This 
last equation is exactly the same as in solution of Problem 4.18 from which we get 

 and 
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4.20 (a)  Let .)(
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i
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=  Since the pole of  is strictly in the left-half –plane 

and hence,  is causal and stable.  Now 
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  Hence,  is an allpass 

function.  Since,  it is a product of causal, stable allpass functions, 

and as a result, is also a causal, stable allpass function. 
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Since  it follows from the above that ,0<ia 1)( 2 <sAi  for ,0>σ  1)( 2 =sAi  
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 Therefore,    Next, from 0.0593.110 025.02 =−=ε

,25
1

log10
210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A
 we get   Now, 316.2278.10 5.22 ==A 4

5.1

61
==

Ω
Ω

=
p

s

k
 

and  .72.9381
0593.0

2278.31511
2

2

1
==

ε

−
=

A

k
  Hence, 3.0943.

)/1(log

)/1(log

10

110 ==
k

k
N  

We choose  as the filter order. 4=N
To verify using MATLAB, we use the code fragment  
[N,Wn]=buttord(2*pi*1500,2*pi*6000,0.25,25,'s'); 
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which yields N = 4 and Wn = 18365.51286. 
 

4.23 The poles are given by  Hence, 

 

.61,/)25( ≤≤= +π ll
l

jep

,0.7071 + 0.7071  ,9659.02588.0 )12/9(
2

)12/7(
1 jepjep jj −==+−== ππ

   ,2588.09659.0  0.2588, + 0.9659 *3
)12/11(

4
)12/9(

3 jpepjep jj −−===−== ππ

,7071.07071.0*2
)12/13(

5 jpep j −−=== π .9659.02588.0*1
)12/15(

6 jpep j −−=== π  
The poles can also be determined in MATLAB using the statement 
[z,p,k]=buttap(6) which yields 
 
p = 
  -0.2588 + 0.9659i 
  -0.2588 - 0.9659i 
  -0.7071 + 0.7071i 
  -0.7071 - 0.7071i 
  -0.9659 + 0.2588i 

-0.9659 - 0.2588i 
 

4.24 From Eq. (4.41) of text, ),()(2)( 21 Ω−ΩΩ=Ω −− NNN TTT  where  is defined in Eq. 
(4.40). 

)(ΩNT

 
 Case 1: .1≤Ω   Making use of Eq. (4.40) in Eq. (4.41) we get 

 ( ) ( )Ω⋅−−Ω⋅−Ω=Ω −− 11 cos)2(coscos)1(cos2)( NNTN  

   ( ) ( )Ω−Ω−Ω−ΩΩ= −−−− 1111 cos2coscoscoscoscos2 NN  

   [ ])sin(cos)cossin()cos(cos)coscos(2 1111 ΩΩ+ΩΩΩ= −−−− NN  

    [ ])cos2sin()cossin()cos2cos()coscos( 1111 ΩΩ+ΩΩ− −−−− NN  

    )cos2cos()coscos()cos(cos)coscos(2 1111 ΩΩ−ΩΩΩ= −−−− NN

   [ ]1)(coscos2)coscos()coscos(2 12112 −ΩΩ−ΩΩ= −−− NN  

   [ ] ).coscos(122)coscos( 1221 Ω=+Ω−ΩΩ= −− NN  
 
 Case 2: .1>Ω   Making use of Eq. (4.40) in Eq. (4.41) we get 

 ( ) ( ).cosh)2(coshcosh)1(cosh2)( 11 Ω⋅−−Ω⋅−Ω=Ω −− NNTN   Using the trigonometric 
identities 

),sinh()sinh()cosh()cosh()cosh( BABABA −=− ),cosh()sinh(2)2sinh( AAA = and 

and following a similar algebra as in Case 1, we can show ,1)(cosh2)2cosh( 2 −= AA

  ).coshcosh()( 1 Ω=Ω −NTN

 

4.25 From the solution of Problem 4.22, we have 4
1
=

k
 and 72.9381.

1

1
=

k
  Hence, 
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 .2.4151
)/1(cosh

)/1(cosh
1

1
1

==
−

−

k

k
N   We choose the filter order as .3=N  

 The filter order obtained using the MATLAB statement 
[N,Wn]=cheb1ord(2*pi*1500,2*pi*6000,0.25, 25, 's') results in N=3. 
 

4.26 ,25.0
1

1
log10

210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ε+
  which yields 0.2434.=ε   ,25

1
log10

210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A
  which 

yields   Now, 316.2278.2 =A 25.0
6000

1500
==

Ω

Ω
=

s

p
k  and ==

−

ε
=

2278.315

2434.0

12
1

A
k  

0.0137.=   Substituting the value of  in Eq. (4..55a) we get   Then from Eq. 
(4.55b) we get   Substituting the value 

k 0.9682.' =k
.0.0040 =ρ 0ρ  in Eq. (4.55c) we get 0.004.=ρ  

Finally, from Eq. (4.54) we arrive at 2.0591.=N   We choose the next higher integer as the 
filter order  .3=N
 
The filter order obtained using the MATLAB statement 
[N,Wn]=ellipord(2*pi*1500,2*pi*6000,0.25, 25, 's') results in N=3. 
 

4.27  where ),()()12()( 2
2

1 sBssBNsB NNN −− +−= 1)(1 += ssB  and  .33)( 2
2 ++= sssB

 (a) Thus,  ,15156)1()33(5)()(5)( 2322
1

2
23 +++=++++=+= ssssssssBssBsB

  )33()15156(7)()(7)( 2223
2

2
34 ++++++=+= sssssssBssBsB

    .1051054510 234 ++++= ssss

 (b)  )15156()1051054510(9)()(9)( 232234
3

2
45 ++++++++=+= sssssssssBssBsB

    .94594542010515 2345 +++++= sssss

4.28  and   The mapping is thus 24.02 ×π=Ω p .32ˆ ×π=Ω p .
ˆ

72.04
ˆ

ˆ 2

ss
s

pp ×π
=

ΩΩ
=    

Denote   Hence, the desired highpass transfer function is given 

by 

28.4245.72.04 2 =×π=K

102835.9309.4

10
)()ˆ(

ˆ

2

ˆ

3

ˆ

ˆ/
+⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛

== =

s

K

s

K

s

K
sKsLPHP sHsH  

  
3223

3

ˆ10ˆ2835.9ˆ309.4

ˆ10

ssKsKK

s

+++
=

22966ŝ3481.5ŝ263.8785ŝ10

ŝ10
23

3

+++
=  

 .
2296.6ŝ348.15ŝ26.38785ŝ

ŝ
23

3

+++
=  

4.29  and   The mapping is thus 9.02 ×π=Ω p .32ˆ ×π=Ω p .
ˆ

7.24
ˆ

ˆ 2

ss
s

pp ×π
=

ΩΩ
=    Denote 

   Hence, the desired lowpass transfer function is given by 106.5917.7.24 2 =×π=K
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100087.40238.9

)()(

ˆ

2

ˆ

3

ˆ

3

ˆ
ˆ/

+⎟
⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛+⎟

⎠
⎞⎜

⎝
⎛

⎟
⎠
⎞⎜

⎝
⎛

== =

s

K

s

K

s

K

s

K

sKsLPLP sHsH  

  
3223

3

ˆ100ˆ087.40ˆ238.9 ssKsKK

K

+++
=  

.
12110.735ŝ1049.602ŝ42.729ŝ

12110.735
23 +++

=  

4.30   The mapping is thus .)5.0(2ˆˆ,632ˆ,5.025.02 12 π=π=Ω−Ωπ=×π=Ωπ=×π=Ω ppop

 .
ˆ2

36ˆ

ˆ
36ˆ

5.0
)ˆˆ(ˆ

ˆˆ 2222

12

22

s

s

s

s

s

s
s

pp

o
p

π+
=⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛

π
π+

π=
Ω−Ω

Ω+
Ω=  

 
sssLPBP sHsH ˆ2/)36ˆ( 22)()ˆ( π+==

895.3269.2

93.36701.0

ˆ2

36ˆ
2

ˆ2

36ˆ

2

ˆ2

36ˆ

2222

22

+⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

⎥
⎥

⎦

⎤

⎢
⎢

⎣

⎡
+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛

=
π+π+

π+

s

s

s

s

s

s

 

  .
18.126242ˆ38.1612ˆ19.726ˆ538.4ˆ

)18.126242ˆ33.2182ˆ(01.0
234

24

++++

++
=

ssss

ss  

4.31  and  3105.62ˆ ××π=Ω p .105.12ˆ 3××π=Ωs

 ,5.0log10
21

1
10 −=⎟

⎠
⎞

⎜
⎝
⎛

ε+
 and hence,  .122.0110 05.02 =−=ε

 ,40log10
2

1
10 −=⎟

⎠
⎞

⎜
⎝
⎛

A
 and hence,   Therefore, .1042 =A 286.2632.

11
2

2

1
=

ε

−
=

A

k
 

Set   Then .1=Ω p .
3

13

5.1

5.6
ˆ

ˆ
==

Ω

Ω
=Ω

s

p
s   Thus, .

3

131
=

Ω
Ω

=
p

s

k
  The order of the 

prototype lowpass filter is thus given by .8579.3
)/1(log

)/1(log

10

110 ==
k

k
N   As a result, we 

choose the filter order as .4=N  
The order of the prototype lowpass filter obtained using the MATLAB statement 
[N,Wn]=buttord(1,13/3,0.5, 40, 's') results in N=4. 
The order of the desired highpass filter is also  .4

 
4.32  and   Thus, ,1010ˆ,1045ˆ,1020ˆ 3

1
3

2
3

1 ×=×=×= spp FFF .1050ˆ 3
2 ×=sF
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8
21 109ˆˆ ×=pp FF  and   Since   we can either 

increase left stopband edge  or decrease the left passband edge  to make 

  We choose to increase  to a new value given by  in 

which case   The center angular frequency of the 

bandpass filter is therefore   The passband width is 

 

.105.7ˆˆ 8
21 ×=ss FF ,ˆˆˆˆ

2121 sspp FFFF >

1
ˆ
sF 1

ˆ
pF

.ˆˆˆˆ
2121 sspp FFFF = 1

ˆ
sF ,1018ˆ 3

1 ×=sF

.109ˆˆˆˆˆ 82
2121 ×=== osspp FFFFF

.10302ˆ 3××π=Ωo

.10252ˆˆ 3
21 ××π=Ω−Ω= ppwB

To determine the bandedges of the prototype lowpass filter we set  and thus,  1=Ω p

.28.1
2518

1830
ˆ

ˆˆ 22

1

2
1

2
=

×
−

=
Ω

Ω−Ω
Ω=Ω

ws

so
ps

B
 

Now, .78125.0
28.1

1
==

Ω

Ω
=

s

p
k   Hence, .62421826.01' 2 =−= kk  

Next, 25.0
1

1
log10

210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ε+
 or equivalently,  which yields 025.0)1(log 2

10 =ε+

50.05925372110 025.02 =−=ε  or .0.243421=ε   Likewise, 50
1

log10
210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A
 

or, equivalently,  which yields   Therefore, 5)(log 2
10 =A .1000001052 ==A

.058635856.0
)'1(2

'1
,1069768.7

1
0

4

2
1 =

+
−

=ρ×=
−

ε
= −

k

k

A
k   As a result, 

.058637246.0)(150)(15)(2 13
0

9
0

5
00 =ρ+ρ+ρ+ρ=ρ   Hence,  

.0328.6
)/1(log

)/4(log2

10

110 =
ρ

=
k

N   We choose 7=N  as the order of the prototype lowpass 

filter. 
Note that the order can also estimated using the specifications of the bandpass filter.  To 
this end, the statement to use is  
[N,Wn]=ellipord([20 45],[15 50],0.25,50,'s') which also yields N=7 as 
the order of the prototype lowpass filter.  The order of the desired bandpass filter is 
therefore  .1427 =×
 

4.33  and    Thus,  ,1020ˆ,1070ˆ,1010ˆ 6
1

6
2

6
1 ×=×=×= spp FFF .1045ˆ 6

2 ×=sF

  and   Since   we can either 

increase left passband edge  or decrease the left stopband edge  to make 

  We choose to increase  to a new value given by  

13
21 1070ˆˆ ×=pp FF .1090ˆˆ 13

21 ×=ss FF ,ˆˆˆˆ
2121 sspp FFFF <

1
ˆ
pF 1

ˆ
sF

.ˆˆˆˆ
2121 sspp FFFF = 1

ˆ
pF
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 ,108571.12
ˆ

ˆˆ
ˆˆ 6

2

21
21 ×==

p

ss
pp

F

FF
FF   in which case  .10700ˆˆˆˆ 122

2121 ×=== osspp FFFFF

 The width of the stopband is  and the center angular 

frequency of the stopband is  

6
12 10252ˆˆ ××π=Ω−Ω= sswB

.107004 1222 ××π=Ωo

 To determine the bandedges of the prototype lowpass filter we set  resulting in its 

passband edge 

1=Ωs

.4375.0
ˆˆ

ˆ

2
1

2
1 =
Ω−Ω

Ω
Ω=Ω

po

wp
pp

B
 

 Now, 5.0
1

1
log10

210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

ε+
 or equivalently,  which yields 05.0)1(log 2

10 =ε+

  or 1220184543.0110 05.02 =−=ε .349114.0=ε   Likewise, 30
1

log10
210 −=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

A
 

 or, equivalently,  which yields   Therefore, 3)(log 2
10 =A .10001032 ==A

 2.2857
4375.0

11
==

Ω
Ω

=
p

s

k
 and .90.4836236

349114.0

99911 2

1
==

ε
−

=
A

k
 

 Substituting the values of 
k

1  and 
1

1

k
 in Eq. (4.43) we get 

.5408.3
)2857.2(cosh

)4836236.90(cosh
1

1
==

−

−
N   We therefore choose 4=N  as the order of the 

prototype lowpass filter.  The order of the desired bandstop filter is thus  .8
 Using the statement [N,Wn]=cheb1ord(0.4375,1,0.5,30,'s') we get N=4. 

Note that the order can also estimated using the specifications of the bandstop filter.  To 
This end, the statement to use is  
[N,Wn]=cheb1ord([10 70],[20 45],0.5,30,'s') which also yields N=4 as 
the order of the prototype lowpass filter. 

 
4.34 From Eq. (4.71), the difference in dB in the attenuation levels at  and  is given by 

  Hence, for 
pΩ sΩ

)./(log20 10 spN ΩΩ ,2 po Ω=Ω   the attenuation difference in dB is equal to 

  Likewise, for .0206.62log20 10 NN = ,3 po Ω=Ω   the attenuation difference in dB is 

equal to   Finally, for .5424.93log20 10 NN = ,4 po Ω=Ω   the attenuation difference in 

dB is equal to .0412.124log20 10 NN =  
 
4.35 The equivalent representation of the D/A converter of Figure 4.48 reduces to the circuit 

shown below if -th bit is ON and the remaining bits are OFF, i.e., and  

 

j 1=ja

.,0 jkak ≠=
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+
a  VRj

inY

GL

Vo,j

2N   1_
2 j   2_2 j 022 j   1_

 
 

In the above circuit,  is the total conductance seen by the load conductance inY LG  which is 

given by  The above circuit can be redrawn as indicated below: .122
1

0
−=∑=

−

=

NN

i

i
inY

+
a  VRj

GL

Vo,j

2 j   1_
Yin

_ 2 j   1_

 

Using the voltage-divider relation we then get .
2 1

, Rj
Lin

j

jo Va
GY

V ⋅
+

=
−

 Using the 

superposition theorem, the general expression for the output voltage  is thus given by oV

.
)12(1

2
2

1

1

1

1

R
L

N
L

j
N

j

jN

j
Rj

Lin

j

o V
R

R
aVa

GY
V

⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛

−+
∑=∑ ⋅

+
=

=

−

=

−
 

 
4.36 The equivalent representation of the D/A converter of Figure 4.49 reduces to the circuit 

shown below on the left if -th bit is ON and the remaining bits are OFF, i.e., N 1=Na and  
 ,,0 Nkak ≠=

+
a  VRN

GL

Vo,N

G
2
__ G

2
__

+
a  VRN

GL

Vo,N

G
2
__G

2
__

+

 
which simplifies to the circuit shown above on the right. 
 
Using the voltage-divider relation we then get  

.
)(2

22

2
, RN

L

L
RNG

G
G

G

No Va
RR

R
VaV

L

⋅
+

=⋅
++

=  

The equivalent representation of the D/A converter of Figure 4.49 reduces to the circuit 
shown below on the left if )1( −N -th bit is ON and the remaining bits are OFF, i.e., 

and  11 =−Na ,1,0 −≠= Nkak  
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+

GL

G
2
__ G

2
__ G

2
__

G

Ra      V_N   1

Vo,N 1_

GL

G
2
__

G

+

G
2
__

Ra      V_N   1

Vo,N 1_

G
2
__+

 
which simplifies to the circuit shown above on the right. 
 
Its Thevenin equivalent circuit is indicated below: 

+

GL
G
2
__G

2
__

+

Vo,N 1_

aN 1____
2 RV

 
from which we readily obtain 

.
2)(22

112
1, R

N

L

L
R

N

L

G

No V
a

RR

R
V

a

GG
V −−

− ⋅
+

=⋅
+

=  

Following the same procedure we can show that if the –th bit is ON and the remaining 
bits are OFF, i.e., and 

l
,1=la ,,0 l≠= kak  then 

.
2)(2, RN

L

L
o V

a

RR

R
V

l
l

l −
⋅

+
=  

Hence, in general we have 

.
2)(21

∑ ⋅
+

=
= −

N
RN

L

L
o V

a

RR

R
V

l
l

l  

 
4.37 From the input-output relation of the first-order hold, we get the expression for the impulse 

response as .)1(),(
)()(

)()( TntnTnTt
T

TnTnT
nTth f +<≤−

−δ−δ
+δ=  In the range 

 the impulse response is given by ,0 Tt <≤ .1
)()0(

)0()(
T

t
t

T

T
th f +=

−δ−δ
+δ=   

Likewise, in the range ,2TtT <≤  the impulse response is given by 

.1)(
)0()(

)()(
T

t
Tt

T

T
Tth f −=−

δ−δ
+δ=   Outside these two ranges,  Hence we 

have 

.0)( =th f
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T 2T0
t

1

2

1_

h  (t)f

otherwise.,0

,2,1

,0,1

)( TtT
T

t

Tt
T

t

th f = { +

_

<

<

<

<

 
 Using the step function we can write 

)]2()([1)]()([1)( TtTt
T

t
Ttt

T

t
th f −µ−−µ⎟

⎠
⎞

⎜
⎝
⎛ −+−µ−µ⎟

⎠
⎞

⎜
⎝
⎛ +=  

 ).2(2)2(
)2(

)2()(2)(
)(2

)()( TtTt
T

Tt
TtTtTt

T

Tt
t

T

t
t −µ+−µ

−
+−µ−−µ−−µ

−
−µ+µ=  

 
Taking the Laplace transform of the above equation we arrive at the transfer function 

.
11

2
1

2
211

)(

22

2

22

22 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛ −
⎟
⎠
⎞

⎜
⎝
⎛ +

=+⋅+−−⋅−+=
−−−−−−

s

e

T

sT

s

e

s

e

Ts

e

s

e

s

e

TTss
sH

sTsTsTsTsTsT

f

  Hence, the frequency response is given by 

.
2/

)2/sin(2
1

11
)(

1tan
2

22
2

TjTj
Tj

f ee
T

T
TT

j

e

T

Tj
jH ΩΩ−

Ω− −
⎟
⎠
⎞

⎜
⎝
⎛

Ω
Ω

Ω+=⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛

Ω
−

⎟
⎠
⎞

⎜
⎝
⎛ Ω+

=Ω   A 

plot of the magnitude responses of the zero-order hold and the first-order hold is shown 
below: 

0 0.5 1 1.5 2 2.5 3
0

0.5

1

1.5

Ω

A
m

pl
itu

de

← zero-order hold

← first-order hold

 
 

4.37 From the input-output relation of thelinear interpolator, we get the expression for the 

impulse response as .)1(),(
)()(

)()( TntnTnTt
T

TnTnT
TnTth f +<≤−

−δ−δ
+−δ=  In the 

range  the impulse response is given by ,0 Tt <≤ .
)()0(

)()( t
T

T
Tth f

−δ−δ
+−δ=   Likewise, 
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in the range  the impulse response is given by ,2TtT <≤ ).(
)0()(

)0()( Tt
T

T
th f −

δ−δ
+δ=   

Outside these two ranges, .0)( =th f  Hence we have 

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

<≤−

<≤

=

otherwise.,0

,2,2

,0,

)( TtT
T

t

Tt
T

t

th f  

T 2T0
t

1

h  (t)f

 
 

Using the step function we can write  

)]2()([2)]()([)( TtTt
T

t
Ttt

T

t
th f −µ−−µ⎟

⎠
⎞

⎜
⎝
⎛ −+−µ−µ=  

 ).2(
)2(

)(
)(2

)( Tt
T

Tt
Tt

T

Tt
t

T

t
−µ

−
+−µ

−
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Taking the Laplace transform of the above equation we arrive at the transfer function 
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responses of the ideal filter, zero-order hold and the first-order hold is shown below: 
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M4.1  We use N = 4 and Wn = 18365.512865 computed in Problem 4.22 and use omega 
= 0:2*pi:2*pi*10000; to evaluate the frequency points.  The gain plot obtained using 
Program 4_2 is shown below. 
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M4.2  We use N = 3 computed in Problem 4.23 and Fp = 2*pi*1500 and Rp = 0.25 
and use omega = 0:2*pi:2*pi*10000; to evaluate the frequency points.  The gain plot 
obtained using Program 4_3 is shown below. 
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M4.3  We replace the statement  

Fp = input('Passband edge frequency in Hz = '); with  
Fs = input('Stopband edge frequency in Hz = '); replace 
Rp = input('Passband ripple in dB = '); 
 with Rs = input('Minimum stopband attenuation in dB = '); and 
replace [num,den] = cheby1(N,Rp,Fp,'s'); with [num,den] = 
cheby2(N,Rs,Fs,'s'); to modify Program 4_3.   
Next, we run the modified program using N = 3 and Rs = 25, and Fs = 2*pi*6000.  The 
gain response plot generated by the modified program is shown below. 
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The numerator and the denominator coefficients of the 3rd order Type 2 Chebyshev lowpass 
filter can be obtained by typing num and den in the command window: 

10723

102

104.866329410542.4198332257030.25552

104.866329410138.1864
)(

×+×++

×+
=

sss

s
sH LP . 

 
M4.4  We use N = 3 and Wn = 9424.777960769379 computed in Problem 4.26 in 

Program 4_4 and use omega = [0: 200: 12000*pi]; to evaluate the frequency points.  The 
gain plot generated by running this program is shown below:  
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M4.5 The MATLAB program used is as given below: 
 

[N,Wn]=buttord(1,13/3,0.5, 40, 's'); 
[B,A] = butter(N,Wn,'s'); 
[num,den]=lp2hp(B,A,2*pi*6500);  
figure(1) 
[h,w]=freqs(B,A);gain = 20*log10(abs(h)); 
plot(w,gain);grid 
xlabel('\Omega');ylabel('Gain, dB');  
title('Analog Lowpass Filter');  
figure(2) 
[h,w]=freqs(num,den);gain = 20*log10(abs(h)); 
plot(w/(2*pi),gain);grid 
xlabel('Frequency, Hz');ylabel('Gain, dB');  
title('Analog Highpass Filter'); 
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M4.6 The MATLAB program used is given below: 

[N,Wn] = ellipord(1,1.28,0.25,50,'s'); 
[B,A] = ellip(N,0.25,50,Wn,'s'); 
[num,den] = lp2bp(B,A,2*pi*30e3,2*pi*25e3); 
 
figure(1) 
omega = [0:0.01:10]; 
h = freqs(B,A,omega); 
gain = 20*log10(abs(h)); 
plot(omega,gain); grid; axis([0 5 -80 5]); 
xlabel('\Omega'); ylabel('Gain, dB'); 
title('Analog Lowpass Filter'); 
 
figure(2) 
omega = [0:200:100e3*2*pi]; 
h = freqs(num,den,omega); 
gain = 20*log10(abs(h)); 
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plot(omega/(2*pi),gain); grid; axis([0 60e3 -80 5]); 
xlabel('Frequency in Hz'); ylabel('Gain, dB'); 
title('Analog Bandpass Filter'); 
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 The numerator and denominator coefficients of can be obtained by typing num and den in 

the Command Window. 
 
M4.7 The MATLAB program used is given below: 
 

[N,Wn] = cheb1ord(0.3157894, 1, 0.5, 30,'s'); 
[B,A] = cheby1(N,0.5, Wn,'s'); 
[num,den] = lp2bs(B,A,2*pi*sqrt(700)*10^6, 2*pi*15e6); 
figure(1) 
omega = [0:0.01:10]; 
h = freqs(B,A,omega); 
gain = 20*log10(abs(h)); 
plot(omega, gain); grid; axis([0 4 -70 5]); 
xlabel('\Omega'); ylabel('Gain, dB'); 
title('Analog Lowpass Filter'); 
figure(2) 
omega = [0:10000:160e6*pi]; 
h = freqs(num,den,omega); 
gain = 20*log10(abs(h)); 
plot(omega/(2*pi), gain); grid; axis([0 80e6 -70 5]); 
xlabel('Frequency in Hz'); ylabel('Gain, dB'); 
title('Analog Bandstop Filter'); 
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M4.8 The MATLAB program to generate the plots of Figure 4.56 is given below: 
 

% Droop Compensation 
w = 0:pi/100:pi; 
h1 = freqz([-1/16 9/8 -1/16],1,w); 
h2 = freqz(9, [8 1], w); 
w1 = 0; 
for n = 1:101; 

h3(n) = sin(w1/2)/(w1/2); 
w1 = w1 + pi/100; 

end 
m1 = 20*log10(abs(h1)); 
m2 = 20*log10(abs(h2)); 
m3 = 20*log10(abs(h3)); 
plot(w/pi,m3,’-’,w/pi,m1+m2,’--’,w/pi,m2+m3,’-.’);grid 
xlabel(‘Normalized frequency’);ylabel(Gain, dB’); 
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