First Course on Power Systems

Module 6: High-Voltage DC (HVDC) Transmission Systems

By
Ned Mohan
Professor of ECE
University of Minnesota

Reference Textbook:
First Course on Power Systems by Ned Mohan,
www.mnpere.com

Module 6: HVDC Transmission Systems

Chapt	er 7 HIGH VOLTAGE DC (HVDC) TRANSMISSION SYSTEMS	7-1
7-1	INTRODUCTION	7-1
7-2	POWER SEMICONDUCTOR DEVICES AND THEIR	7-1
	CAPABILITIES	
7-3	HVDC TRANSMISSION SYSTEMS	7-2
7-4	CURRENT-LINK HVDC SYSTEMS	7-3
7-5	VOLTAGE-LINK HVDC SYSTEMS	7-13
	REFERENCES	7-18
	PROBLEMS	7-18

Benefits of HVDC Systems

Lower Cost at higher power and

longer distances

Lower Losses

- Stability
- Suited for Underwater Transmission

Symbols and Capabilities of Power Semiconductor Devices

Fig. 7-1 Power semiconductor devices.

Power Semiconductor Devices and Applications

Figure 7-2 Power semiconductor devices: (a) ratings (source: Siemens), (b) various applications (source: ABB).

HVDC System

Fig. 7-3 HVDC system – one-line diagram.

HVDC Systems: Voltage-Link and Current-Link

Fig. 7-4 HVDC systems: (a) Current-Link, and (b) Voltage-Link.

HVDC Projects in North America

Fig. 7-5 HVDC projects, mostly current-link systems, in North America [source: ABB]

Current-Link HVDC System

Fig. 7-6 Block diagram of a current-link HVDC system.

Diodes

Thyristors

A Primitive Resistive Circuit

$$V_d = \frac{1}{2\pi} \int_{\alpha}^{\pi} \hat{V}_s \sin \omega t \cdot d(\omega t) = \frac{\hat{V}_s}{2\pi} (1 + \cos \alpha)$$

With Series Inductance:

