First Course on Power Systems

Module 7: Distribution System, Loads and Power Quality

By
Ned Mohan
Professor of ECE
University of Minnesota

Reference Textbook:
First Course on Power Systems by Ned Mohan,
www.mnpere.com

Module 7: Distribution System, Loads and Power Quality

Chapte	er 8 DISTRIBUTION SYSTEM, LOADS AND POWER QUALITY	8-1
8-1	INTRODUCTION	8-1
8-2	DISTRIBUTION SYSTEMS	8-1
8-3	POWER SYSTEM LOADS	8-2
8-4	POWER QUALITY CONSIDERATIONS	8-7
8-5	LOAD MANAGEMENT	8-19
8-6	PRICE OF ELECTRICITY	8-20
	REFERENCES	8-20
	PROBLEMS	8-20

Distribution System

- 9% of Electric Loss
- Sub-transmission at 230 kV or below
- 35 kV and down to 12 kV
 - Secondary Voltages at 600 V, 480/277 V (3-phase, 4-wire), 208/120 V

Residential Distribution System

- 1-Phase Distribution Lines at 13.8
 kV
- Stepped down locally to ±120V
- Neutral Grounded at the House Entrance
- Ground Wire is carried along

GFI

 $\pm 120V$

•Power System Load Daily Load Curve Load-Duration Curve

Fig. 8-2 System load.

- Load Factor
- Storage
- Load Forecasting
- Renewable Energy

Utility Load Distribution

- PHEV

Power Factor and Voltage Sensitivity of Power System Loads

Table 8-1 Power Factor and Voltage Sensitivity of Power Systems Load

Type of Load		Power Factor	$a = \partial P / \partial V$	$b = \partial Q / \partial V$
Electric Heating		1.0	2.0	0
Incandescent Lighting		1.0	1.5	0
Fluorescent Lighting		0.9	1.0	1.0
Motor Loads		0.8 - 0.9	0.05 - 0.5	1.0 - 3.0
Modern Power- Electronics based Loads		1.0	0	0

Voltage-Link System used in Power Electronics Based Loads

Fig. 8-4 Voltage-link-system for modern and future power-electronics based loads.

- Higher System Efficiency
 - Heat Pumps and CFLs

Induction Motor Per-Phase Diagram

Fig. 8-5 Per-phase, steady state equivalent circuit of a three-phase induction motor.

- Conventional Speed Control by Reducing Voltage
 - High slip speed result in large rotor losses

Variable-Speed Drives

Fig. 8-4 Voltage-link-system for modern and future power-electronics based loads.

Switch-Mode DC Power Supplies

Fig. 8-7 Switch-mode dc power supply.

- Efficiencies 90% and Higher