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Appendix G: Matrices, Determinants,
and Systems of Equations

G.1 Matrix Definitions and Notations

Matrix
Anm × n matrix is a rectangular or square array of elements withm rows and n columns. An
example of a matrix is shown in Eq. (G.1).

A �
a11 a12 ∙ ∙ ∙ a1n
a21 a22 ∙ ∙ ∙ a2n

..

. ..
. ..

. ..
.

am1 am2 ∙ ∙ ∙ amn

2
66664

3
77775 �G:1�

For each subscript, aij, i = the row, and j = the column. If m = n, the matrix is said to be a
square matrix.

Vector
If a matrix has just one row, it is called a row vector. An example of a row vector follows:

B � b11 b12 ∙ ∙ ∙ b1n
� � �G:2�

If a matrix has just one column, it is called a column vector. An example of a column vector
follows:

C �
c11
c12

..

.

cm1

2
66664

3
77775 �G:3�

1
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Partitioned Matrix
A matrix can be partitioned into component matrices or vectors. For example, let

A �
a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
6664

3
7775 �

a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

2
6664

3
7775 � A11 A12

A21 A22

� �
�G:4�

where

A11 �
a11 a12

a21 a22

a31 a32

2
64

3
75; A12 �

a13 a14

a23 a24

a33 a34

2
64

3
75

A21 � a41 a42
� �

; A22 � a43 a44
� �

Null Matrix
Amatrix with all elements equal to zero is called the null matrix; that is, aij � 0 for all i and j
An example of a null matrix follows:

A �
0 0 0 ∙ ∙ ∙ 0

0 0 0 ∙ ∙ ∙ 0

..

. ..
. ..

. ..
. ..

. ..
. ..

.

0 0 0 0 0 0 0

2
66664

3
77775 �G:5�

Diagonal Matrix
A square matrix with all elements off of the diagonal equal to zero is said to be a diagonal
matrix; that is, aij � 0 for i 6� j. An example of a diagonal matrix follows:

A �

a11 0 0 ∙ ∙ ∙ 0

0 a22 0 ∙ ∙ ∙ 0

0 0 a33 ∙ ∙ ∙ 0

..

. ..
. ..

. ..
. ..

.

0 0 0 ∙ ∙ ∙ ann

2
66666664

3
77777775

�G:6�

Identity Matrix
A diagonal matrix with all diagonal elements equal to unity is called an identity matrix and is
denoted by I; that is, aij � 1 for i � j, and aij � 0 for i 6� j. An example of an identity matrix
follows:

A �
1 0 0 ∙ ∙ ∙ 0

0 1 0 ∙ ∙ ∙ 0

..

. ..
. ..

. ..
. ..

.

0 0 0 ∙ ∙ ∙ 1

2
66664

3
77775 �G:7�
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Symmetric Matrix
A square matrix for which aij = aji is called a symmetric matrix. An example of a symmetric
matrix follows:

A �
3 8 7

8 9 2

7 2 4

2
64

3
75 �G:8�

Matrix Transpose
The transpose of matrixA, designatedAT, is formed by interchanging the rows and columns
of A. Thus, if A is an m × n matrix with elements aij, the transpose is an n × m matrix with
elements aji. An example follows. Given

A �
1 7 9

2 6 �3
4 8 5

�1 3 �2

2
6664

3
7775 �G:9�

then

AT �
1 2 4 �1
7 6 8 3

9 �3 5 �2

2
64

3
75 �G:10�

Determinant of a Square Matrix
The determinant of a square matrix is denoted by det A, or

a11 a12 ∙ ∙ ∙ a1n
a21 a22 ∙ ∙ ∙ a2n

..

. ..
. ..

. ..
.

am1 am1 ∙ ∙ ∙ amn

2
66664

3
77775 �G:11�

The determinant of a 2 � 2 matrix,

A � a11 a12
a21 a22

� �
�G:12�

is evaluated as

detA � a11 a12
a21 a22

����
���� � a11a22 � a21a12 �G:13�

Minor of an Element
Theminor,Mij of element aij of detA is the determinant formed by removing the ith row and the
jth column from det A. As an example, consider the following determinant:

detA �
3 8 7

6 9 2

5 1 4

�������

�������
�G:14�

G.1 Matrix Definitions and Notations 3
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The minorM32 is the determinant formed by removing the third row and the second column
from det A. Thus,

M32 � 3 7

6 2

����
���� � �36 �G:15�

Cofactor of an Element
The cofactor, Cij, of element aij of det A is defined to be

Ci j � �1� ��i�j�Mij �G:16�
For example, given the determinant of Eq. (G.14)

C21 � �1� ��2�1�M21 � �1� �3 8 7
1 4

����
���� � �25 �G:17�

Evaluating the Determinant of a Square Matrix
The determinant of a square matrix can be evaluated by expanding minors along any row or
column. Expanding along any row, we find

detA � Pn
k�1

aikCik �G:18�
where n = number of columns of A; j is the jth row selected to expand by minors; and Cik is
the cofactor of aik. Expanding along any column, we find

detA � Pm
k�1

akjCkj �G:19�

wherem = number of rows of A; j is the jth column selected to expand by minors; and Ckj is
the cofactor of akj. For example, if

A �
1 3 2

�5 6 �7
8 5 4

2
64

3
75 �G:20�

then, expanding by minors on the third column, we find

detA � 2
�5 6

8 5

����
���� � ��7� 1 3

8 5

����
���� � 4

1 3

�5 6

����
���� � �195 �G:21�

Expanding by minors on the second row, we find

detA � ���5� 3 2

5 4

����
���� � 6

1 2

8 4

����
���� � ��7� 1 3

8 5

����
���� � �195 �G:22�

Singular Matrix
A matrix is singular if its determinant equals zero.

Nonsingular Matrix
A matrix is nonsingular if its determinant does not equal zero.

4 Appendix G: Matrices, Determinants, and Systems of Equations
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Adjoint of a Matrix
The adjoint of a square matrix,A, written adjA, is the matrix formed from the transpose of the
matrix A after all elements have been replaced by their cofactors. Thus,

adjA �
C11 C12 ∙ ∙ ∙ C1n

C21 C22 ∙ ∙ ∙ C2n

..

. ..
. ..

. ..
.

Cn1 Cn2 ∙ ∙ ∙ Cnn

2
66664

3
77775

T

�G:23�

For example, consider the following matrix:

A �
1 2 3

�1 4 5

6 8 7

2
64

3
75 �G:24�

Hence,

adjA �

���� 4 5

8 7

���� �
�����1 5

6 7

����
�����1 4

6 8

����
�
���� 2 3

8 7

����
���� 1 3

6 7

���� �
���� 1 2

6 8

�������� 2 3

4 5

���� �
���� 1 3

�1 5

����
���� 1 2

�1 4

����

2
666666664

3
777777775

T

�
�12 10 �2
37 �11 �8

�32 4 6

2
64

3
75 �G:25�

Rank of a Matrix
The rank of a matrix, A, equals the number of linearly independent rows or columns. The
rank can be found by finding the highest-order square submatrix that is nonsingular. For
example, consider the following:

A �
1 �5 2

4 7 �5
�3 15 �6

2
64

3
75 �G:26�

The determinant of A � 0. Since the determinant is zero, the 3 � 3 matrix is singular.
Choosing the submatrix

A � 1 �5
4 7

� �
�G:27�

whose determinant equals 27, we conclude that A is of rank 2.

G.2 Matrix Operations

Addition
The sum of two matrices, written A + B = C, is defined by aij + bij = cij. For example,

2 �1
3 5

� �
� 7 �5

�4 3

� �
� 9 �6

�1 8

� �
�G:28�

G.2 Matrix Operations 5
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Subtraction
The difference between two matrices, written A – B = C, is defined by aij – bij = cij. For
example,

2 �1
3 5

� �
� 7 �5

�4 3

� �
� �5 4

7 2

� �
�G:29�

Multiplication
The product of two matrices, written AB = C, is defined by cij � Pn

k�1
aikbkj. For example, if

A � a11 a12 a13
a21 a22 a23

� �
; B �

b11 b12 b13
b21 b22 b23
b31 b32 b33

2
64

3
75 �G:30�

then

C � a11b11 � a12b21 � a13b31� � a11b12 � a12b22 � a13b32� � a11b13 � a12b23 � a13b33� �
a21b11 � a22b21 � a23b31� � a21b12 � a22b22 � a23b32� � a21b13 � a22b23 � a23b33� �

� �

�G:31�
Notice that muitiplicalion is defined only if the number of columns of A equals the number
of rows of B.

Multiplication by a Constant
Amatrix can be multiplied by a constant by multiplying every element of the matrix by that
constant. For example, if

A � a11 a12
a21 a22

� �
�G:32�

then

kA � ka11 ka12
ka21 ka22

� �
�G:33�

Inverse
An n � n square matrix, A, has an inverse, denoted by A�1, which is defined by

AA�1 � I �G:34�
where I is an n � n identity matrix. The inverse of A is given by

A�1 � adjA
detA

�G:35�

For example, find the inverse of A in Eq. (G.24). The adjoint was calculated in Eq. (G.25).
The determinant of A is

detA � 1
4 5
8 7

����
���� � ��1� 2 3

8 7

����
���� � 6

2 3
4 5

����
���� � �34 �G:36�
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Hence,

A�1 �

�12 10 �2
37 �11 �8

�32 4 6

2
64

3
75

�34 �
0:353 �0:294 0:059

�1:088 0:324 0:235

0:941 �0:118 �0:176

2
64

3
75 �G:37�

G.3 Matrix and Determinant Identities
The following are identities that apply to matrices and determinants.

Matrix Identities
Commutative Law

A � B � B � A �G:38�

AB 6�BA �G:39�
Associative Law

A � �B � C� � �A � B� � C �G:40�

A�BC� � �AB�C �G:41�
Transpose of Sum

�A � B�T � AT � BT �G:42�
Transpose of Product

�AB�T � BTAT �G:43�

Determinant Identities
Multiplication of a Single Row or Single Column of a Matrix, A, by a Constant
If a single row or single column of a matrix, A, is multiplied by a constant, k, forming the
matrix, Ã, then

det ~A � k detA �G:44�
Multiplication of All Elements of an n × n Matrix, A, by a Constant

det�kA� � kndetA �G:45�

Transpose

detAT � detA �G:46�

G.3 Matrix and Determinant Identities 7
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Determinant of the Product of Square Matrices

detAB � detA det B �G:47�
detAB � det BA �G:48�

G.4 Systems of Equations

Representation
Assume the following system of n linear equations:

a11x1 � a12x2 � ∙ ∙ ∙ � a1n � b1
a21x1 � a22x2 � ∙ ∙ ∙ � a2n � b2

..

.

an1x1 � an2x2 � ∙ ∙ ∙ � ann � bn

�G:49�

This system of equations can be represented in vector-matrix form as

Ax � B �G:50�
where

A �
a11 a12 ∙ ∙ ∙ a1n
a21 a22 ∙ ∙ ∙ a2n

..

. ..
. ..

. ..
.

an1 an2 ∙ ∙ ∙ ann

2
66664

3
77775; B �

b1
b2

..

.

bn

2
66664

3
77775; x �

x1
x2

..

.

xn

2
66664

3
77775

For example, the following system of equations,

5x1 � 7x2 � 3 �G:51a�
�8x1 � 4x2 � �9 �G:51b�

can be represented in vector-matrix form as Ax = B, or

5 7
�8 4

� �
x1
x2

� �
� 3

�9
� �

�G:52�

Solution via Matrix Inverse
If A is nonsingular, we can premultiply Eq. (G.50) by A�1, yielding the solution x. Thus,

x � A�1B �G:53�
For example, premultiplying both sides of Eq. (G.52) by A�1, where

A�1 � 5 7
�8 4

� ��1
� 0:0526 �0:0921

0:1053 0:0658

� �
�G:54�

we solve for x = A�1B as follows:

x1
x2

� �
� 0:0526 �0:0921

0:1053 0:0658

� �
3

�9
� �

� 0:987
�0:276

� �
�G:55�

8 Appendix G: Matrices, Determinants, and Systems of Equations
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Solution via Cramer’s Rule
Equation (G.53) allows us to solve for all unknowns, xi, where i= 1 to n. If we are interested
in a single unknown, xk, then Cramer’s rule can be used. Given Eq. (G.50), Cramer’s rule
states that

xk � detAk

detA
�G:56�

where Ak; is a matrix formed by replacing the kth column of A by B. For example, solve
Eq. (G.52). Using Eq. (G.56) with

A � 5 7
�8 4

� �
; B � 3

�9
� �

we find

x1 �
3 7

�9 4

����
����

5 7
�8 4

����
����
� 75
76

� 0:987 �G:57�

and

x2 �
5 3

�8 �9
����

����
5 7

�8 4

����
����
� �21

76
� �2:276 �G:58�
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