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J.1 Derivation

Rather than using the Laplace transformation, we can solve the equations directly in the time
domain using a method closely allied to the classical solution of differential equations. We
will find that the final solution consists of two parts that are different from the forced and

natural responses
First, assume a homogeneous state equation of the form

x(1) = Ax(?)

(1.1)

Since we want to solve for x, we assume a series solution, just as we did in elementary scalar

differential equations. Thus,
x(t) =bo + bt +byt® + -+ + btk + by 4
Substituting Eq. (J.2) into (J.1) we get

by +2byt + - + kbt 4 (k + Dbyt + -+
=A(by + bt +byt> + - -+ + byt + b+ -1

Equating like coefficients yields

b; = Ab,
1 1
b2 = zAb] = EAzbO
1
by = EAkbo
_ k+1
P = (k+1)! 0

Substituting these values into Eq. (J.2) yields

1 1 1
X(I) =by + Abyt + §A2b012 + .-+ —Akbotk + Ak+1botk+1 + .-

k! k+ D)

1
Ak+1tk+1 ... |b
k+ 1) * 0

1 1
= (T+At+=-A%P+ - + =AY
(+ +5 oty +

(1.2)

(1.3)

(J.4a)

(J.4b)

(J.4c)

(7.4d)

(1.5)
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Appendix J: Derivation of the Time Domain Solution of State Equations

But, from Eq. (J.2),
x(0) = by (1.6)’

Therefore,

1 1
x(t) = (I+At+2A2t2+ v+ =AM 4

i s 1)!Ak+‘;k+1 + --->x(0) (1.7

Let

1 1 1
At 22 k k k1 k+1
=(I+At+-Ar 4+ -  + A+ —AT T 4 - 1.8

¢ ( 2 ! k+1)! ) 8)
where ¢ is simply a notation for the matrix formed by the right-hand side of Eq. (J.8). We
use this definition because the right-hand side of Eq. (J.8) resembles a power series
expansion of e“, or

1 1 1
at _ 22 1 kK K+l k1
e —(l+at+2at + +k!at+(k+1)!a 4+ ) J.9
Using Eq. (J.7), we have
x(1) = eA'x(0) (J.10)

We give a special name to e*': it is called the state-transition matrix*, since it performs a
transformation on x(0), taking x from the initial state, x(0), to the state x(¢) at any time, 7. The
symbol, @(7), is used to denote ™. Thus,

D(1) = M (J.11)
and
x(f) = ®()x(0) (J.12)

There are some properties of ®(f) that we will use later when we solve for x(¢) in the
text. From Eq. (J.12),

x(0) = ®(0)x(0) (J.13)
Hence, the first property of ®(7) is
P0)=1 (J.14)

where I is the identity matrix. Also, differentiating Eq. (J.12) and setting this equal to
Eq. (J.1) yields

(1) = D(1)x(0) = Ax(r) (1.15)

which, at ¢ = 0, yields
®(0)x(0) = Ax(0) (J.16)

"In this development we consider the initial time, 7o, to be 0. More generally, f, # 0. After completing this
development, the interested reader should consult Appendix K on www.wiley.com/college/nise for the more
general solution in terms of initial time 7, # 0.

2 The state-transition matrix here is for the initial time 7, = 0. The derivation in Appendix K on www.wiley.com/
college/nise for 1, # 0 yields x(f) = eA=0)x(z,).
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Thus, the second property of ®(¢) follows from Eq. (J.16):

®0)=A (1.17)

In summary, the solution to the homogeneous, or unforced, system is
x(1) = D(1)x(0) (J.18)

where

P0)=1 (J.19)
and

®0)=A (1.20)

Let us now solve the forced, or nonhomogeneous, problem. Given the forced state
equation

x(1)Ax(t) + Bu(r) J.21)
rearrange and multiply both sides by A
e Mx(1) — Ax(t)] = e A" Bu(r) (1.22)

Realizing that the left-hand side is equal to the derivative of the product e *x(f), we obtain

% [e™x(1)] = e *'Bu(r) (7.23)

Integrating both sides yields

[e™2x(1)] /, = e 'x(r) — x(0) = /0 e ABu(r)dr (J.24)

since ¢~ evaluated at t = 0 is the identity matrix (from Eq. (J.8)). Solving for x(¢) in
Eq. (J.24) we obtain

x(1)

t
e Ax(0) + / e A=IBu(r)dr
0 (1.25)

D(1)x(0) + /0’ ®(t — 7)Bu(r)dz

where ®(7) = ¢*' by definition.
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