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1 we talked about:

= Recelver structure

= Impact of AWGN and ISI on the transmitted
signal

= Optimum filter to maximize SNR
= Matched filter receiver and Correlator receiver
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Ier Job

Demodulation and sampling:

Waveform recovery and preparing the received
signal for detection:

= Improving the signal power to the noise power (SNR)
using matched filter

= Reducing ISI using equalizer
= Sampling the recovered waveform

Detection:

Estimate the transmitted symbol based on the
received sample
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-I' structure

Digital Receiver

Step 1 — waveform to sample transformation Step 2 — decision making

_______________________________________________________________

Demodulate & Sample

Threshold m.
ﬁ—gﬁ comparison ——

r(t) Frequency Receiving Equalizing
down-conversion filter [, | filter

Compensation for

For bandpass signals _
channel induced ISI

[Received waveform} Baseband pUISe }
i i Baseband pulse Sample
[(pOSSIbW dlStOI’Ed) [ ] [ (test Statistic)}
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‘tion of matched filter receiver

Bank of M matched filters

____________________________________________________

- T
My I
! ! atched filter output:
ﬂ_ . i | | =, _Z , Observation
| : 2 vector
* ZM
Su (T—1) ) -

zi=r(t)*s" (T-t) i=1.., M
z=(z:(T),z5(T),...., 2\ (T)) = (21, 25, Zm )
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‘ation of correlator receiver

Bank of M correlators

_________________________________________________

s°1(t)
! J‘T Zy (T)
: | ] | .
! 0 1 ' Correlators output:
rt) | : . | __ ' Z Observation
: s (t) ' | T4 vector
j [ —
0 Km (T)
z2=(2,(T),25(T )y 2 (1)) = (20, 231, 21 )
T
Zi — jr(t)Sl (t)dt i :1 ..... M
0
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1 e are going to talk about:

= Detection:

= Estimate the transmitted symbol based on the
received sample

= Signal space used for detection
= Orthogonal N-dimensional space
= Signal to waveform transformation and vice versa
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mal Space

What is a signal space?
Vector representations of signals in an N-dimensional
orthogonal space
Why do we need a signal space?
It iIs @ means to convert signals to vectors and vice versa.
It is @ means to calculate signals energy and Euclidean
distances between signals.
Why are we interested in Euclidean distances between
signals?
For detection purposes: The received signal is transformed to
a received vector. The signal which has the minimum

Euclidean distance to the received signal is estimated as the
transmitted signal.
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-ic example of a signal space

WZ (t)
s —@&.3a.

! I ' l/jl(t)
________________ = z:(Zl,ZZ)

S=(a,a)

- S (t) = agpn (t) +apw, (t) < S = (ag1,810)
Transmitted signal | s, (t) = gy (t) + Ao (t) < Sy = (81, a99)
alternatives
S S3(t) = agqy (t) +agow, (t) < S5 =(azy, asy)
Received signal at

matched filter output 2(t) = 2y (1) + 2oy, () & 2= (71, 25)
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- space

To form a signal space, first we need to know
the Inner product between two signals
(functions):
Inner (scalar) product:
= x(©, y(®) == [x(®y ®)dt

Analogous to the “dot” product of discrete n-space vectors
= cross-correlation between x(t) and y(t)

Properties of inner product:
< ax(),y@®) == a < x(bt), y() =

< x(t),ay() >= a < xX(t), y() >

< X))+ y(),z@) >=<x),z(t) >+ < y(t), z(t) >
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-space N, .
= The distance in signal space is measure by calculating

the norm.

= What is norm?
Norm of a signal:

IX@|| = /= X, x() = =/ [, [x(®)[2dt = /E,

= “length’ or amplitude of x(t)
lax®]| = [af[[x®]
Norm between two signals:

dx,y - ”X(t) — y(t)”

= We refer to the norm between two signals as the
Euclidean distance between two signals.

Lecture 4 11




If distances In signal space

S;=&,a)

S =(a,a)

The Euclidean distance between signals z(t) and s(t):

ds , =|[si (1) — z(®)||
1=12,3
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Ional sighal space

N-dimensional orthogonal signal space is characterized by
N linearly independent functions {l//J (t)e}J called basis
functions. The basis functions must satlsfy the orthogonality

condition
T . 0<t<T
(D), v () >= [w; (tw (H)dt = K;5; .
<W|()WJ()> g)WI()WJ() = j,i=1,..., N
where
5. _ 1—>i=]
" lo—i=j

If all K; =1, the signal space is orthonormal.
See my notes on
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! of an orthonormal basis

= Example: 2-dimensional orthonormal signal space

Wl(t)z\’-rg cos(2at/T) O<t<T W?t(t)
<
wo (1) = ,/% sinRz/T) 0<t<T
) T 0 > w1(t)
<y (1), o () >= [y (D (1)dt =0
0]
[ ()] =|lw2®)] =1
= Example: 1-dimensional orthonormal signal space
l/jl(t)“
1
i o] =2, : - 0
y Tt
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!pace

= Any arbitrary finite set of waveforms {5 (®)}is

where each member of the set is of duration T, can be
expressed as a linear combination of N orthonogal

waveforms y, (1) where N <M .
j=

N
1=1....M
si(t) = > ajjr; (1)
1=1 N<M
where
|- - - - - -= = = = = -=-=-=-=-=-=-==-=-"=-"==-=-"=-=====%= 1
| T =1,...,N |
P A =—<si0),y; () >=— gs,(t)wj(t)dt L g OStST :
L2 _____.
N
Si = (&1, 82+ aiN) Ei = > Kjlay
j=1
\ector representation of waveform Waveform energy

Lecture 4 15



ace ...

N
S; (t): Z aUWJ (t) Si :(ai].’aiZ""’aiN)
j=1
Waveform to vector conversion Vector to waveform conversion

Wl(t)

i J‘T all - -

| | ad

: 0 11

5 (t) | :

4N (t)

| T

E 4%%)—> j > _aIN _

E 0 a|N

Lecture 4 16



f'projecting signals to an

Vs (t)
s =@.,a»)

- 4 (1)

S=(a,a)

[ 51(t) = ag (1) + Aoy, (1) < sy = (814, a10)
Sy (1) = Ay (1) + asw o (t) < s, = (azy, ay2)
S3(t) = agyy; (1) +agwo (1) < s3 = (azg, azy)

Transmitted signal
alternatives

\

.
aijz(j)si(t)l//j(t)dt j=L..N i=1,.M 0<t<T
Lecture 4 17



-I Space — cont'd

To find an orthonormal basis functions for a given

set of signals, the Gram-Schmidt procedure can be
used.

Gram-Schmidt procedure:

Given a signal set {s®}; , compute an orthonormal basis #:®J},
1. Define  wa(® =51/ JVE = s1.(0 /|5 O]
2.For i=2...m compute dj(t) =s;(t) — > <s; (1), ; () >y ; (1)
Ifdi®=0 let  wi®=di®/di®)] '
If d;(t)=0, do not assign any basis function.
3. Renumber the basis functions such that basis is

A OR 2O IR (5}

B  This is only necessary if di(t)=0 for any iin step 2.
O Notethat N <M
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-of Gram-Schmidt procedure

= Find the basis functions and plot the signal space for the following
transmitted signals:

s,(t) | s, ()]
A
JT 0 Tt
,» A
0 T t T
= Using Gram-Schmidt procedure:
© -afa- Wl a0-ANO
1 S, (1) = —Awy (1)
yi(t) =51 0/E =510/ A T o = (A) 5. (A)
() <=O¥O>= 50w bit=-A )

da(t) = 5, () — (~Aly () =0

>Q O

)
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-on of the matched filter receiver

Bank of N matched filters

JPR— w1 (T —t1) ‘@JZ ] Observation

| l vector
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‘tion of the correlator recelver

Bank of N correlators

_________________________________________________

(1)
E J‘T Zl _ _
5 é) [
: 0 1 |
rt) | : _Zi Z Observation
: 0 o vector
A
s 1E

b o o o e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e e = = e

Zj :-I(j-)r(t)wj(t)dt j:l """ N
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m I matched filter receivers using

s, (D1 s, (t)1 v (D)
A 1
JT ‘ JT

) 0 T t
0 T t  -A 0 Tt
ﬁ
____________ 1 matched filter
l//l(t)“

—
~
—+
—
v
5
—
N
el
I
N
[N

________________________________________________________

= Number of matched filters (or correlators) is reduced by 1 compared to using
matched filters (correlators) to the transmitted signal.

= Reduced number of filters (or correlators)

Lecture 4 22



-e In the orthonormal signal space

= AWGN, n(t), can be expressed as

n(t) :\ﬁ(t)}+\ﬁ(t)}

Noise projected on the signal space Noise outside of the signal space
which impacts the detection process.

- : | N :
<n(t),y;t)>=0 1= 1....N ; {”j }j:]_ independent zero-mean !
k | Gaussain random variables with

. variance var(nj)=Ng/2
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