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Last time we talked about:

 Receiver structure

 Impact of AWGN and ISI on the transmitted 

signal

 Optimum filter to maximize SNR

 Matched filter receiver and Correlator receiver
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Receiver job

 Demodulation and sampling: 

 Waveform recovery and preparing the received 

signal for detection:

 Improving the signal power to the noise power (SNR) 

using matched filter

 Reducing ISI using equalizer 

 Sampling the recovered waveform 

 Detection:

 Estimate the transmitted symbol based on the 

received sample
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Receiver structure

Digital Receiver
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Implementation of matched filter receiver
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Implementation of correlator receiver
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Today, we are going to talk about:

 Detection:

 Estimate the transmitted symbol based on the 

received sample

 Signal space used for detection

 Orthogonal N-dimensional space

 Signal to waveform transformation and vice versa
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Signal space

 What is a signal space?

 Vector representations of signals in an N-dimensional 

orthogonal space

 Why do we need a signal space?

 It is a means to convert signals to vectors and vice versa.

 It is a means to calculate signals energy and Euclidean 

distances between signals.

 Why are we interested in Euclidean distances between 

signals?

 For detection purposes: The received signal is transformed to 

a received vector. The signal which has the minimum 

Euclidean distance to the received signal is estimated as the 

transmitted signal.
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Schematic example of a signal space
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Signal space

 To form a signal space, first we need to know 

the inner product between two signals 

(functions):

 Inner (scalar) product:

 Properties of inner product:
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Signal space …

 The distance in signal space is measure by calculating 

the norm.

 What is norm?

 Norm of a signal:

 Norm between two signals:

 We refer to the norm between two signals as the 

Euclidean distance between two signals.
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Example of distances in signal space
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Orthogonal signal space

 N-dimensional orthogonal signal space is characterized by 
N linearly independent functions                called basis 
functions. The basis functions must satisfy the orthogonality
condition

where

 If all          , the signal space is orthonormal. 

 See my notes on Fourier Series
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Example of an orthonormal basis

 Example: 2-dimensional orthonormal signal space

 Example: 1-dimensional orthonormal signal space
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Signal space …

 Any arbitrary finite set of waveforms 

where each member of the set is of duration T, can be 

expressed as a linear combination of N orthonogal 

waveforms               where .

where
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Signal space …
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Example of projecting signals to an 

orthonormal signal space
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Signal space – cont’d

 To find an orthonormal basis functions for a given 
set of signals, the Gram-Schmidt procedure can be 
used.

 Gram-Schmidt procedure:
 Given a signal set              , compute an orthonormal basis

1. Define

2. For                   compute

If               let

If  , do not assign any basis function.

3. Renumber the basis functions such that basis is

 This is only necessary if             for any i in step 2. 

 Note that 
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Example of Gram-Schmidt procedure

 Find the basis functions and plot the signal space for the following 

transmitted signals:

 Using Gram-Schmidt procedure:
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Implementation of the matched filter receiver
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Implementation of the correlator receiver
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Example of matched filter receivers using 

basic functions

 Number of matched filters (or correlators) is reduced by 1 compared to using 
matched filters (correlators) to the transmitted signal.

 Reduced number of filters (or correlators)
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White noise in the orthonormal signal space

 AWGN, n(t), can be expressed as
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