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Last time we talked about:

 Signal detection in AWGN channels

 Minimum distance detector

 Maximum likelihood

 Average probability of symbol error

 Union bound on error probability

 Upper bound on error probability based 
on the minimum distance 
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Today we are going to talk about:

 Another source of error: 

 Inter-symbol interference (ISI)

 Nyquist theorem

 The techniques to reduce ISI

 Pulse shaping

 Equalization 
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Inter-Symbol Interference (ISI)

 ISI in the detection process due to the 
filtering effects of the system

 Overall equivalent system transfer function

 creates echoes and hence time dispersion

 causes ISI at sampling time
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Inter-symbol interference

 Baseband system model

 Equivalent model
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Nyquist bandwidth constraint

 Nyquist bandwidth constraint:
 The theoretical minimum required system bandwidth to 

detect Rs [symbols/s] without ISI is Rs/2 [Hz]. 

 Equivalently, a system with bandwidth W=1/2T=Rs/2
[Hz] can support a maximum transmission rate of 
2W=1/T=Rs [symbols/s] without ISI.

 Bandwidth efficiency, R/W [bits/s/Hz] : 
 An important measure in DCs representing data 

throughput per hertz of bandwidth.

 Showing how efficiently the bandwidth resources are 
used by signaling techniques.
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Ideal Nyquist pulse (filter)
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Nyquist pulses (filters)

 Nyquist pulses (filters):

 Pulses (filters) which results in no ISI at the 
sampling time.

 Nyquist filter: 

 Its transfer function in frequency domain is 
obtained by convolving a rectangular function with 
any real even-symmetric frequency function

 Nyquist pulse: 

 Its shape can be represented by a sinc(t/T) 
function multiply by another time function.

 Example of Nyquist filters: Raised-Cosine filter
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Pulse shaping to reduce ISI

 Goals and trade-off in pulse-shaping

 Reduce ISI

 Efficient bandwidth utilization

 Robustness to timing error (small side 
lobes)
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The raised cosine filter

 Raised-Cosine Filter

 A Nyquist pulse (No ISI at the sampling time)
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The Raised cosine filter – cont’d
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Pulse shaping and equalization to 
remove ISI

 Square-Root Raised Cosine (SRRC) filter and Equalizer
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Example of pulse shaping

 Square-root Raised-Cosine (SRRC) pulse shaping

t/T

Amp. [V]

Baseband tr. Waveform

Data symbol

First pulse

Second pulse

Third pulse
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Example of pulse shaping …

 Raised Cosine pulse at the output of matched filter

t/T

Amp. [V]

Baseband received waveform at 

the matched filter output

(zero ISI)
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Eye pattern

 Eye pattern:Display on an oscilloscope which 

sweeps the system response to a baseband signal at 
the rate 1/T (T symbol duration) 
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Example of eye pattern:
Binary-PAM, SRRQ pulse

 Perfect channel (no noise and no ISI)
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Example of eye pattern:
Binary-PAM, SRRQ pulse …

 AWGN (Eb/N0=20 dB) and no ISI
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Example of eye pattern:
Binary-PAM, SRRQ pulse …

 AWGN (Eb/N0=10 dB) and no ISI
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Equalization – cont’d
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Equalization

 ISI due to filtering effect of the 
communications channel (e.g. wireless 
channels)

 Channels behave like band-limited filters
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Equalization: Channel examples

 Example of a frequency selective, slowly changing (slow fading)  
channel for a user at 35 km/h
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Equalization: Channel examples …

 Example of a frequency selective, fast changing (fast fading)  
channel for a user at 35 km/h
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Example of eye pattern with ISI:
Binary-PAM, SRRQ pulse

 Non-ideal channel and no noise
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Example of eye pattern with ISI:
Binary-PAM, SRRQ pulse …

 AWGN (Eb/N0=20 dB) and ISI
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Example of eye pattern with ISI:
Binary-PAM, SRRQ pulse …

 AWGN (Eb/N0=10 dB) and ISI
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Equalizing filters …

 Baseband system model

 Equivalent model

Tx filter Channel
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Equalization – cont’d

 Equalization using

 MLSE (Maximum likelihood sequence 
estimation)

 Filtering – See notes on 
z-Transform and Digital Filters

 Transversal filtering

 Zero-forcing equalizer

 Minimum mean square error (MSE) equalizer

 Decision feedback

 Using the past decisions to remove the ISI contributed 
by them

 Adaptive equalizer

../../../Tutorials/Ztransform.doc
../../../Topics/Filters/fullguide.html
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Equalization by transversal filtering

 Transversal filter: 

 A weighted tap delayed line that reduces the effect 
of ISI by proper adjustment of the filter taps. 

 


N

Nn
n NNkNNnntxctz 2,...,2  ,...,     )()( 

  

Nc 1Nc 1Nc Nc



)(tx

)(tz

Coeff. 

adjustment



Lecture 6 29

Transversal equalizing filter …

 Zero-forcing equalizer:

 The filter taps are adjusted such that the equalizer output 

is forced to be zero at N sample points on each side:

 Mean Square Error (MSE) equalizer:

 The filter taps are adjusted such that the MSE of ISI and 
noise power at the equalizer output is minimized.
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Example of equalizer

 2-PAM with SRRQ

 Non-ideal channel

 One-tap DFE
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Matched filter outputs at the sampling time
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ISI- noise
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