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Last time we talked about:

Signal detection in AWGN channels

Minimum distance detector
Maximum likelihood

Average probability of sym

ol error

Union bound on error probability

Upper bound on error proba
on the minimum distance
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Today we are going to talk about:

Another source of error:
Inter-symbol interference (ISI)

Nyquist theorem

The techniques to reduce ISI
Pulse shaping
Equalization
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Inter-Symbol Interference (ISI)

ISI in the detection process due to the

filtering effec

s of the system

Overall equivalent system transfer function

H(T)=H(T)H(T)H(T)

creates echoes and hence time dispersion
causes ISI at sampling time

e, — Sk -+ nk —+ Zaisi

1=k
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Inter-symbol interference

Baseband system model

X; X,
Tx filt Channel t) | Rx. filter Zk %
0 T L[ /\/\ DR ] h ) - ;—IDetectorﬁ(’k}
Sl I s ~—~ \/ H, (f) LGN
Xs n(t)
Equivalent model
X; X, - _
Equivalent system AN 2(t) Z, .
X CNL N X
o) LT . h(t) /\'\\ — D 3 IDetector—{’k}
= H() et VLY o
% T A(t)

H(f):Ht(f)Hc(f)Hr(f)
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Nyquist bandwidth constraint

Nyquist bandwidth constraint:

= The theoretical minimum required system bandwidth to
detect Rs [symbols/s] without ISI is Rs/2 [Hz].

= Equivalently, a system with bandwidth W=1/2T=Rs/2
[Hz] can support a maximum transmission rate of
2W=1/T=Rs [symbols/s] without ISI.

L R cw=Rs 5o [symbolisiHz]
T 2 W

Bandwidth efficiency, R/W [bits/s/Hz] :

= An important measure in DCs representing data
throughput per hertz of bandwidth.

= Showing how efficiently the bandwidth resources are

used by signaling techniques.
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Ideal Nyquist pulse (filter)

e
[ Ideal Nyquist filter J [ Ideal Nyquist pulse J
H(T) h(t) = sinc(t/T)
i aWA a\
SO EVARVAE.
2T 2T S
We 1
2T
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Nyquist pulses (filters)

Nyquist pulses (filters):

Pulses (filters) which results in no ISI at the
sampling time.

Nyquist filter:

Its transfer function in frequency domain is
obtained by convolving a rectangular function with
any real even-symmetric frequency function

Nyquist pulse:

Its shape can be represented by a sinc(t/T)
function multiply by another time function.

Example of Nyquist filters: Raised-Cosine filter
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Pulse shaping to reduce ISI

Goals and trade-off in pulse-shaping
Reduce ISI
Efficient bandwidth utilization

Robustness to timing error (small side
lobes)
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The raised cosine filter

Raised-Cosine Filter
A Nyquist pulse (No ISI at the sampling time)

-

1 for| f [< 2W, —W
H(f)=1{cos’ 7 LTI = 2Wo for 2Wy -W <| f |<W
4 W -W,
0 for| f [>W

cos[2z7z(W —W}j)t]
1—-[4W —Wp)t]?

h(t) = 2W, (sinc(2Wgt))

_ W Wy
Excess bandwidth: W —W/, Roll-off factor T ==y
0<r<i
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The Raised cosine filter — cont'd

|H(f) = Hre (F) ] h(t) = hrc (1)

1 -3 11
T 4T 2T

Baseband W g=(1+T) % Passband W pgp=(1+T)R;
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Pulse shaping and equalization to
remove 151

No ISI at the sampling time
Hre(T)=H(T)H(T)H (T)H(T)

Square-Root Raised Cosine (SRRC) filter and Equalizer

Hrc(T)=H{(T)H (1) _
Taking care of IS
Hr(f) =H(f) = \/Hre(f) = Hsrre () caused by tr. filter

H.(f)= _ 1 | Taking care of ISI
° H.(f) | caused by channel
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Example of pulse shaping

e
Square-root Raised-Cosine (SRRC) pulse shaping
Amp. [V]
1.5 ; ; ; ; ;
’ ’ ' . Baseband tr. Waveform
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Example of pulse shaping ...

Raised Cosine pulse at the output of matched filter

A [y}

1

______________________

Basaband re¢

(zero ISI)

eived waveform at

------- PR e Hiatched ilter output

""""""""""""""""""""""""""""""""
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Eye pattern

Eye pattern:Display on an oscilloscope which

sweeps the system response to a baseband signal at
the rate 1/T (T symbol duration)

[ Distortion } I .
due to ISI A E r 1 : I:
i i \ ': Noise margin}
2 : : !
5l -
© | : AV
2 W — ‘V
— 7N T ! X
SN i |
| i | /oo Sensitivity to
] \ 7 timing error
;/—h; <~ !
[Timing jitter} — .
time scale
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Example of eye pattern:

Binary-PAM.oRRQ pulse
= Perfect channel (no noise and no ISI)

2

1.5-

il
0.5-
0.5

A
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-2
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Example of eye pattern:

Binary-PAM, SRRQO pulse ...

= AWGN (Eb/N0=20 dB) and no ISI

2

1.5

0.5

-0.5

-1.5
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Example of eye pattern:

Binary-PAM, SRRQO pulse ...

= AWGN (Eb/N0=10 dB) and no ISI
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Equalization — cont'd

-
Step 1 — waveform to sample transformation Step 2 — decision making
Demodulate & Sample Detect
Z(T)! L
Frequency | Receiving Equalizing | Thresh(_)ld i M,
down-conversion filter [, filter |1 ©/ 7] comparison ——

Compensation for
channel induced ISI

For bandpass signals

[Received waveform] Baseband pulse J
i i Baseband pulse Sample
[(pOSSIbW dlStOI’Gd) [ J [ (test statistic)}
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Equalization

ISI due to filtering effect of the
communications channel (e.g. wireless
channels)
Channels behave like band-limited filters
Ho (f) =[Hc(f)le'=" D)

\ J
Y
4 : ) 4 : )
Non-constant amplitude Non-linear phase
Amplitude distortion Phase distortion
\_ J G J
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Equalization: Channel examples

B
Example of a frequency selective, slowly changing (slow fading)
channel for a user at 35 km/h

channel amp. [dB]

150

a0

frequency index 0o time index



Equalization: Channel examples ...

Example of a freauency selective, fast chanaina (fast fadina)
(

channel amp. [dB]

1500

500

frequency index 0 o time index
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Example of eye pattern with ISI:
Binary-PAM, SRRQO pulse

= Non-ideal channel and no noise
h.(1) =o6({)+0.76(t —T)

2 T

1L

0 T — e o -

-1.5¢F
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Example of eye pattern with ISI:
Binary-PAM,__SRRQO pulse

= AWGN (Eb/N0=20 dB) and ISI
h. () =) +0. 76t —T)

2

. g‘*‘/‘ \\,:* A?Gﬁv

@Q.,,,\O qp \w

-1.5

0.2 0.3
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Example of eye pattern with ISI:
Binary-PAM,__SRRQO pulse

= AWGN (Eb/N0=10 dB) and ISI
he (t) = 5(1) +0.75(t—T)

'o 01 " 03 04 05 06 07 08 09 1
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Equalizing filters ...

Baseband
a
T% aSt=kT) [Ty filter
PN l > ht (t) —
T‘éz A, H ()

Equivalent model

aQ
T% a St —KT)

A\ 4

«—
T, 5,

Equivalent system

h(t)
H(f)

system model

Channel r(t) [Equalizer|  |Rx. filterf(t) «Z &}
h, (t) *D ( ): h, (t) > N (1) 'T_i;—IDetector—E
H(P) | T LH(D) H(F) |
n(t)
H(T)=H(f)H(f)H (T)
2(t) X(t) |Equalizer| z(t) fzk &}
> > (D) = T |Detector—
| H. () )
n(t)
" filtered noise |
LA =n(t) =he @)
Lecture 6 26



Equalization — cont'd

Equalization using

MLSE (Maximum likelihood sequence
estimation)

Filtering — See notes on
and
= Transversal filtering

Zero-forcing equalizer
Minimum mean square error (MSE) equalizer

= Decision feedback

Using the past decisions to remove the ISI contributed
by them

= Adaptive equalizer
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Equalization by transversal filtering

_ B e
Transversal filter:

A weighted tap delayed line that reduces the effect
of ISI by proper adjustment of the filter taps.

N
z(t) = >c,x(t—n7) n=-N,.., N k=-2N,....,.2N

n=—N
X(t )/L= /Z' > ’Z' I N ’Z- > T
N\ ég G
Coeff. :
adjustment
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Transversal equalizing filter ...

N
Zero-forcing equalizer:

The filter taps are adjusted such that the equalizer output
is forced to be zero at N sample points on each side:

AdeSt () — {1 K—0
{Cn }::L_N > ’ 0 k=4#1,..,=N

Mean Square Error (MSE) equalizer:

The filter taps are adjusted such that the MSE of ISI and
noise power at the equalizer output is minimized.

Adjust )| min E[(z(kT) _ ak)z]

C
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Example of equalizer

B
2-PAM with SRRQ Matched filter outputs at the sampling time
NOn'ideaI Channel 1 Solid circle: transmitted symbol, Cross mark: samples at matched filter output
h.(t)=5(t)+0.36(t-T) Al
One-tap DFE /
ISI-no no_ise, 15 4 05 0 05 :
No equalizer 1 '
/ 0+ ¢ x
ISI-no noise,
. -1 | | | | |
DFE equalizer i s 08 0 08 1
/ O . .
ISI' n0|Se -1 l l l l l
No equalizer P " R ’ B 1
0r P 4 pe = -
IS1- noise / a5 4 05 0 05 1' 15
DFE equalizer
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