
EE 3025 S2005 Homework Set #10 Solutions
Mr. AlHussien is grading Problems 2,4
Mr. Msechu is grading Problems 1

Solution to Problem 1.

Solution to (a): Use Section 34.2 of the class notes as a guide:

format long

[a,b,c] = solve('a^2+b^2+c^2=8','a*b+b*c=-4','a*c=1');

a=eval(a(1)); b=eval(b(1)); c=eval(c(1));

a,b,c

a =

2.41421356237309

b =

-1.41421356237310

c =

0.41421356237310

It looks like the exact solutions would be (one possible choice):

a = 1 +
p
2; b = �

p
2; c =

p
2� 1:

For future reference, some Chap 11 theory developed week of April 25 will show
that if you execute Matlab command

conv([a,b,c],[c,b,a])

you will get the autocorrelation of the �ltered white noise process:

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

conv([a,b,c],[c,b,a])

ans =

1 -4 8 -4 1

So, theorywise, our �lter with tap weights a; b; c as indicated should work. The
rest of the solution gives experimental veri�cation of this.

Solution to (b):

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,50002);

x=a*z(3:50002)+b*z(2:50001)+c*z(1:50000);

RX0_est=mean(x.^2);

RX1_est=mean(x(2:50000).*x(1:49999));

RX2_est=mean(x(3:50000).*x(1:49998));

RX0_est,RX1_est,RX2_est

RX0_est =

8.0100

RX1_est =



-4.0177

RX2_est =

0.9871

Solution to Problem 2.

Solution to (a)(c): Use Experiment 5 of Recitation 12 as a guide:

format rat

R=[8 -4 1 0];

%find first order predictor coefficient A

A = R(2)/R(1)

A =

-1/2

%find second order predictor coefficients B,C

Q2=inv(toeplitz(R(1:2)))*R(2:3)';

B1=Q2(1), B2=Q2(2)

B1 =

-7/12

B2 =

-1/6

%find third order predictor coefficients D,E,F

Q3=inv(toeplitz(R(1:3)))*R(2:4)';

C1=Q3(1), C2=Q3(2), C3=Q3(3)

C1 =

-41/70

C2 =

-7/40

C3 =

-1/70

Solution to (d): We �rst estimate the �rst order MS prediction error in decibels:

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,50003);

x=a*z(3:50003)+b*z(2:50002)+c*z(1:50001);

%generate 1st order predictor samples

A=-1/2;

x1hat=A*x;

%estimate decibels for 1st order

x=x(2:50001);

x1hat=x1hat(1:50000);

decibels1=10*log10(8/mean((x-x1hat).^2))

decibels1 =



1.2564

You are not required to compare to the actual �gure, which is

10 log
10

8

E1

;

where

E1 =
RX(0)

2 � RX(1)
2

RX(0)
= 6:

The actual decibel �gure is therefore

10 log
10
(8=6) = 1:2494 decibels;

so our estimate of 1:2564 is pretty accurate.

We now estimate the second order MS prediction error in decibels:

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,50004);

x=a*z(3:50004)+b*z(2:50003)+c*z(1:50002);

%generate 2nd order predictor samples

B1=-7/12 ; B2=-1/6;

x2hat=B1*x(2:50002)+B2*x(1:50001);

x2hat=x2hat(1:50000);

x=x(3:50002);

decibels2=10*log10(8/mean((x-x2hat).^2))

decibels2 =

1.3821

You are not required to go further. But it is not hard to �nd the actual decibel
�gure. First, via the trick used in Section 35.1 of class notes to �nd �rst order
predictor MS prediction error, you compute the second order MS prediction error
as:

E[(Xn � X̂n)Xn] = RX(0)�B1RX(1)� B2RX(2) = 35=6:

The actual decibel �gure is therefore

10 log
10

8

35=6
= 1:3717 decibels

So, our estimate of 1.3821 decibels is pretty good.

We now estimate the third order MS prediction error in decibels:

a=1+sqrt(2);b=-sqrt(2);c=-1+sqrt(2);

z=randn(1,50005);

x=a*z(3:50005)+b*z(2:50004)+c*z(1:50003);

%generate 3rd order predictor samples

C1= -41/70; C2= -7/40; C3 = -1/70;



x3hat=C1*x(3:50003)+C2*x(2:50002)+C3*x(1:50001);

x3hat=x3hat(1:50000);

x=x(4:50003);

decibels3=10*log10(8/mean((x-x3hat).^2))

decibels3 =

1.3928

You are not required to �nd the actual �gure. But here is how you do it. The
MS prediction error is

RX(0)� C1RX(1)� C2RX(2)� C3RX(3) = 1633=280:

The actual decibel �gure is therefore

10 log
10

 
8

1633=280

!
= 1:3726 decibels:

We ran our script for estimating the third order decibel �gure several times, and
the variance seemed a bit higher than for �rst order or second order. That is why
our estimate does not seem as good. You could instead average up the decibel
estimates from a whole bunch of runs; this would give a better estimate.

One can also consider predictors of fourth order, �fth order, etc., but you will not
get much more improvement over the 3rd order predictor.

Solution to Problem 3.

Solution to (a):

P [V = U + 1] =
1X
k=0

P [U = k; V = k + 1]

=
1X
k=0

P [U = k]P [V = k + 1]

=
1X
k=0

exp(�2)
k!(k + 1)!

= 0:2153

I used the fact that U and V are each Poisson RV's with mean 1.

Solution to (b):

P [V = U + 2] =
1X
k=0

P [U = k; V = k + 2]

=
1X
k=0

P [U = k]P [V = k + 1]

=
1X
k=0

exp(�2)
k!(k + 2)!

= 0:0932



Solution to Problem 4.

Solution to (a): As you learned in EE 3015, for any �xed � in the range 0 < � < 1=2,
the signal f(t + �) is obtained from the signal f(t) by shifting � seconds to the
LEFT. This gives us the following breakdown of the signal f(t+ �) for 0 � t � 1:

f(t+ �) =

8><
>:

1; 0 � t < (1=2)� �
�1; (1=2)� � � t < 1� �
1; 1� � � t � 1

For this range of � , we then have

RX(�) =
Z

1

0

f(t)f(t+ �)dt;

which breaks down as

RX(�) =
Z

1=2��

0

dt+
Z

1=2

1=2��
(�1)dt+

Z
1��

1=2
dt+

Z
1

1��
(�1)dt = 1� 4�:

The other half of RX(�) for negative � is the re
ection of this, since RX(�) is
even. Thus,

RX(�) = 1� 4j� j; �1=2 � � � 1=2:

(For other � you extend this periodically in both directions, with the period being
1.)
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plot of autocorrelation function in (a)



Solution to (b): For 0 < � < 1=2,

f(t+ �) =

(
t+ �; 0 � t < 1� �

t + � � 1; 1� � � t � 1

For this range of � , we then have

RX(�) =
Z

1��

0

t(t+ �)dt+
Z

1

1��
t(t + � � 1)dt =

1

3
+

� 2

2
� �

2
:
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