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Lecture 15

Chapters 4-5 Part 1

15.1 Two Review Examples

In Lecture 15, I presented the following two review examples over the Chapter 2-3 material.

Example 15.1. We present an example in inventory control. A storekeeper wishes to use prob-
ability modeling in order to �gure out how much of an inventory of a certain product he should
keep on his store shelves. Speci�cally, suppose that

� C1 is the price in dollars he pays to the manufacturer for each item of the product.

� C2 is the price in dollars that he sells each item of the product for.

� C3 is the cost in dollars per product item that the storekeeper incurs as a result of having to
keep an unsold item on his shelves until the beginning of the next \selling season". (Think of
the product as a seasonal item, such as a swimsuit, which would typically be sold only during
a certain period within the year.)

� D is the number of product items demanded during the selling season by the customers.

� I is the total number of product items stocked by the storekeeper at the beginning of selling
season.

� P is the total pro�t in dollars realized by the storekeeper at the end of the selling season.

C1; C2; C3 are assumed to be �xed numbers. The amount of inventory I is �xed and is set by the
storekeeper. D is taken to be a random variable taking nonnegative integer values

0; 1; 2; 3; � � �
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LECTURE 15. CHAPTERS 4-5 PART 1 2

according to a certain PMF PD(d). (By seeing what happened over previous selling seasons, the
storekeeper could come up with a model for this PMF.) The pro�t P is a certain function of D and
I:

P = �(D; I):

The goal of the storekeeper is to choose I so that his expected pro�t

E[P ] = E[�(D; I)]

is maximized. It is not hard to see that we have the following functional relationship relating P to
D and I:

P =

(
I(C2 � C1); D > I

(DC2 � IC1)� C3(I �D); D � I

We can compute the expected pro�t as follows:

E[P ] =
1X

d=I+1

I(C2 � C1)gPD(d) +
IX

d=0

[(dC2 � IC1)�C3(I � d)]PD(d)

= I(C2 � C1)P [D > I]� I(C1 + C3)P [D � I] + (C3 + C2)
IX

d=0

dPD(d)

We can write this more compactly as:

E[P ] = I(C2 � C1)P [D > I]� I(C1 + C3)P [D � I] + (C3 + C2)E[DjD � I]P [D � I]:

Substitute
P [D > I] = 1� P [D � I]:

You then obtain

E[P ] = I(C2 � C1)� I(C3 + C2)P [D � I] + (C3 + C2)E[DjD � I]P [D � I]: (15.1)

To be more speci�c, suppose we assume that

C1 = 3

C2 = 9

C3 = 1

Also, assume that D is equiprobable over the set of values

f1; 2; 3; 4; 5g:
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Suppose we consider the case in which I is between 1 and 5. Then

P [D � I] = I=5

E[DjD � I] = 0:5(1 + I)

Substituting into (15.1), we see that
E[P ] = 7I � I2:

This gives us

E[P ] =

8>>><
>>>:

10; I = 5
12; I = 3; 4
10; I = 2
6; I = 1

Notice that for I = 3 or I = 4, we get an expected pro�t of 12 dollars, which is the best for
inventory values I between 1 and 5. The reader can check that E[P ] cannot become bigger than
12 if I > 5. Therefore, the best thing that the storekeeper can do is to make sure his inventory is
either 3 or 4 at the start of the selling season.

Example 15.2. In this problem, we compute how long a person would have to wait for a bus
if he arrives at the bus stop at a random time within a time interval. Speci�cally, Bill arrives at
his bus stop each day between 11am and 12 noon. His arrival time A (in hours) is a uniformly
distributed RV between 11 and 12. Let us �rst suppose that his bus arrives at times

11 : 10; 11 : 20; 11 : 30; 11 : 40; 11 : 50; 12 : 00

His waiting time W (in hours) for the bus is then

W =

8>>>>>>><
>>>>>>>:

11 + (1=6) �A; 11 � A < 11 + (1=6)
11 + (2=6) �A; 11 + (1=6) � A < 11 + (2=6)
11 + (3=6) �A; 11 + (2=6) � A < 11 + (3=6)
11 + (4=6) �A; 11 + (3=6) � A < 11 + (4=6)
11 + (5=6) �A; 11 + (4=6) � A < 11 + (5=6)

12�A; 11 + (5=6) � A � 12

Plotting the waiting time as a function of the arrival time, you obtain the plot at the top of next
page:
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waiting time

arrival time

11             11:10         11:20          11:30        11:40          11:50          12:00

1/6

It should be clear from the plot that we obtain the same contribution to the overall expected waiting
time from each of the 6 ten minute intervals. In other words, if we write

E[W ] =
6X
i=1

E[W jBi]P [Bi]; (15.2)

where Bi is the event that Bill's arrival is in the i-th 10 minute interval, then

E[W jBi] = E[W jB1]; i = 1; 2; 3; 4; 5; 6:

Let us compute E[W jB1]. Time interval B1 goes from 11:00 to 11:10 (which is 11+(1/6) measured
in hours). For A falling in interval B1, we have

W = 11 + (1=6) �A:

Thus,

E[W jB1] = E[11 + (1=6) �AjfA 2 B1g]
= [11 + (1=6)] �E[AjfA 2 B1g]

The conditional distribution of A given A 2 B1 is the uniform distribution from 11 to 11 + (1=6).
Therefore, the conditional mean is the midpoint of this interval:

E[AjfA 2 B1g] = 11 + (1=12):

We conclude that
E[W jB1] = 1=12;

and therefore E[W jBi] are all equal to 1/12 hour (5 minutes). Plugging back into (15.2), we see
that

E[W ] = 1=12 (5 minutes):
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Exercise. Re-compute E[W ] assuming the bus arrives only at the times

11 : 10; 11 : 30; 11 : 50; 12 : 00:

Hint: Write

E[W ] =
4X
i=1

E[W jBi]P [Bi];

where B1; B2; B3; B4 are respectively a 10 minute time interval, a 20 minute time interval, a 20
minute time interval, and a 10 minute time interval. You will then have

E[W jB1] = E[W jB4]

E[W jB2] = E[W jB3]

which means you have to compute both E[W jB1] and E[W jB2]. Your intuition should tell you
what each of these are.

15.2 Joint PMF Introduction

Suppose you have two discrete RV's X and Y . Suppose you perform the underlying experiment
and observe a value x for X and a value y for Y . Then you may regard the point (x; y) in the
xy-plane as an observation of the random pair (X;Y ). The following two events are the same:

fX = x; Y = yg = f(X;Y ) = (x; y)g: (15.3)

The event on the left is the event that your experiment results in value x for X and (on the same
trial) value y for Y . In other words, the event on the left side of (15.3) may be thought of as

fX = xg \ fY = yg;

the intersection of the events fX = xg and fY = yg. The event on the right side of (15.3) is the
event that the random pair (X;Y ) takes the value (x; y).

The joint PMF PX;Y of X;Y is de�ned for each value x of X and value y of Y by the equation

PX;Y (x; y)
�
= P [X = x; Y = y] = P [(X;Y ) = (x; y)]:

It satis�es the properties:

(i): PX;Y (x; y) � 0, all x,y.

(ii):
P

x;y P
X;Y (x; y) = 1.
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(iii): For any subset E of the xy-plane, the prob that (X;Y ) falls in E is computable as

P [(X;Y ) 2 E] =
X

(x;y)2E
PX;Y (x; y):

(iv): PX(x) =
P

y P
X;Y (x; y), for all x.

(v): P Y (y) =
P

x P
X;Y (x; y), for all y.

Notice that (iv) and (v) tell you how to compute the individual PMF's PX(x) of X and P Y (y) of Y
by summing out the variable you don't want from the joint PMF. These two 1-D PMF's obtained
by summing in this way from a joint PMF are called marginal PMF's.

Example 15.3. An urn contains three cards numbered \1", four cards numbered \2", and �ve
cards numbered \3". Two cards are selected at random without replacement. Let X be the number
on the �rst card selected and let Y be the number on the second card selected. The values of the
random pair (X;Y ) are the following nine points in the xy-plane:

(1; 1); (1; 2); (1; 3); (2; 1); (2; 2); (2; 3); (3; 1); (3; 2); (3; 3):

You could plot these points in the xy-plane. Instead, we will use an array of the following type
similar to what we did in Chapter 1:

0
B@

Y = 1 Y = 2 Y = 3

X = 1 (X;Y ) = (1; 1) (X;Y ) = (1; 2) (X;Y ) = (1; 3)
X = 2 (X;Y ) = (2; 1) (X;Y ) = (2; 2) (X;Y ) = (2; 3)
X = 3 (X;Y ) = (3; 1) (X;Y ) = (3; 2) (X;Y ) = (3; 3)

1
CA

We typically do this whenever X and Y take on just a �nite number of values. This array is in
keeping with our \discrete channel" viewpoint from Chapter 1, in which we will frequently want
to consider the RV X as an input to a system and Y as the system output in response to input
X. Notice how each of the nine positions in the preceding array corresponds to one of the nine
possible (x; y) points which are the values of the random pair (X;Y ). If in each position, we put
in the appropriate joint probability, we will then get a joint PMF array which looks like

0
B@

Y = 1 Y = 2 Y = 3

X = 1 PX;Y (1; 1) PX;Y (1; 2) PX;Y (1; 3)
X = 2 PX;Y (2; 1) PX;Y (2; 2) PX;Y (2; 3)
X = 3 PX;Y (3; 1) PX;Y (3; 2) PX;Y (3; 3)

1
CA

We can compute the joint probability that goes in each position using the following multiplication
rule that follows from work we did in Chapter 1:

PX;Y (x; y) = PX(x)P (Y = yjX = x): (15.4)
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To see why this is true, note that the left side involves an intersection of two events

PX;Y (x; y) = P [fX = xg \ fY = yg];

which can then be decomposed as the prob of the �rst event times the cond prob of the 2nd event
given the 1st event. For example, we can do the following computation using (15.4):

PX;Y (1; 2) = (3=12)(4=11) = 12=132:

(You have 3 chances in 12 of drawing one of the 3 cards numbered \1" on the �rst draw, and then
4 chances in 11 of drawing one of the 4 cards numbered \2" on the second draw.) The reader may
easily continue beyond this point and �ll in the entire joint PMF array:

0
B@
Y = 1 Y = 2 Y = 3

X = 1 6=132 12=132 15=132
X = 2 12=132 12=132 20=132
X = 3 15=132 20=132 20=132

1
CA (15.5)

It is not hard to see what rules (iv) and (v) for �nding the marginal PMF's become in this scenario:

� PX(x) is obtained by computing the row sums of the joint PMF array (15.5) and P Y (y) is
obtained by computing the column sums.

The reader may check that the three row sums of array (15.5) are 33=132, 44=132, 55=132, which
are respectively the same as the following PMF values for X:

[PX(1) PX(2) PX(3)] = [3=12 4=12 5=12]:

This is not a surprise, because these are easily seen to be the probs for what happens on the �rst
draw. Notice that the joint PMF array is symmetric, that is, the joint prob in position (i; j) is the
same as the joint prob in position (j; i). Thus, the three column sums will respectively coincide
with the three row sums. That is, the Y PMF will be given by:

[P Y (1) P Y (2) P Y (3)] = [3=12 4=12 5=12]:

Is this a surprise to you? In other words, the second draw has the same individual prob dist as
the �rst draw. What possibly confuses students initially about this example is that there are three
di�erent conditional distributions for the second draw, given each of the three possibilities for the
�rst draw. However, the unconditional distribution of the second draw is not any one of these three
conditional distributions; it is instead a weighted average of the 3 cond dist's. The underlying
symmetry of the problem dictates that this \weighted average distribution" will be the same thing
as the (unconditional) distribution of the 1st draw.
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Let us now compute P [X = Y ], P [X > Y ], and P [X < Y ] for this example. Summing down
the diagonal of the joint PMF array, we obtain

P [X = Y ] = PX;Y (1; 1) + PX;Y (2; 2) + PX;Y (3; 3) = 38=132:

Since the array (15.5) is symmetric, P [X > Y ] and P [Y > X] are the same. Using this fact and

P [X = Y ] + P [X > Y ] + P [Y < X] = 1;

we conclude that

P [X > Y ] = P [Y > X] = (1=2)[1 � P [X = Y ]] = 47=132:

Exercise. If you are still somewhat dubious about the fact that the probability distributions
for the individual draws in sampling without replacement all coincide, you can perform a Matlab
veri�cation as follows. Write a Matlab script which will simulate one trial of the two-step random
experiment of Example 15.3 (the script simulates a value of X, the result of the �rst draw, and then
uses the simulated value of X to simulate the result Y of the second draw). By embedding your
script in a for loop, you can then simulate several thousand observations of the random pair (X;Y )
(from independent trials). Running this for loop will then give you a vector x of the simulated X
observations and a vector y of the simulated Y observations. For each i = 1; 2; 3, you can then
execute the Matlab commands

mean(x==i), mean(y==i)

to see if these estimates of P (X = i) and P (Y = i) are about the same.
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16.1 Two Joint PMF Examples

Here are two more examples on joint PMF's.
Example 16.1. Discrete RV's X;Y each take the values 0; 1; 2. Here is the joint PMF table:

0
B@
Y = 0 Y = 1 Y = 2

X = 0 0:1 0 0:2
X = 1 0:05 0:2 0:3
X = 2 0:1 0 0:05

1
CA (16.1)

You can check as follows that this gives a genuine PMF:

0:1 + 0 + 0:2 + 0:05 + 0:2 + 0:3 + 0:1 + 0 + 0:05 = 1:

The row sums give the marginal PMF of X:

PX(0) = 0:3

PX(1) = 0:55

PX(2) = 0:15

The column sums give the marginal PMF of Y :

P Y (0) = 0:25; P Y (1) = 0:2; P Y (2) = 0:55:

Recall from Bayes Method the array of \forward conditional probabilities" and the array of \back-
ward conditional probabilities". We obtain the array of forward conditional probabilities by dividing

9
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each row of the PMF array (16.1) by the row sum of that row. This procedure yields the following
array of forward conditional probabilities (after simpli�cation):

0
B@
Y = 0 Y = 1 Y = 2

X = 0 1=3 0 2=3
X = 1 1=11 4=11 6=11
X = 2 2=3 0 1=3

1
CA (16.2)

For example, the entry in row 3 and column 1 of (16.2) is interpreted as the conditional probability

P (Y = 0jX = 2) = 2=3:

Notice that the array (16.2) is a bona�de array of forward conditional probabilities because each
of its rows adds up to one. You could interpret the array (16.2) as the channel matrix of a discrete
channel for which X is the input to the channel and Y is the output to the channel in response to
input X.

We can also obtain the array of \backward conditional probabilities" from the joint PMF (16.1)
by dividing each column by the column sum for that column. This yields the following array of
backward conditional probabilities (after simpli�cation):

0
B@
Y = 0 Y = 1 Y = 2

X = 0 2=5 0 4=11
X = 1 1=5 1 6=11
X = 2 2=5 0 1=11

1
CA (16.3)

For example, the entry in row 2 and column 3 is interpreted as

P (X = 1jY = 2) = 6=11:

Notice that each column of the backward conditional probability array (16.3) sums to one.

Example 16.2. We call this the \ice cream cone" example. We perform the following two-step
experiment:

Step 1: Bill eats X ice cream cones, where X has a Poisson distribution with mean 1.

Step 2: Bill 
ips a fair coin X + 1 times, and then runs Y miles, where Y is the number of heads
resulting from the coin 
ips.

Let us �nd the joint PMF of (X;Y ). First, let us determine which (x; y) points in the xy-plane are
the values of (X;Y ). (There are in�nitely many of them!) Notice the following:

� If X = 0, then Y 2 f0; 1g.
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� If X = 1, then Y 2 f0; 1; 2g.
� If X = 2, then Y 2 f0; 1; 2; 3g.

Continuing in this way, the reader can see that the following set S is the set of all possible values
of (X;Y ):

S = f(i; j) : i = 0; 1; 2; � � � ; j = 0; 1; � � � ; i+ 1g:
For example, (7; 5) is in the set S because the second coordinate is between 0 and 8 = 7 + 1
inclusively. However, the point (7; 10) is not in S.

For each point (i; j) belonging to S, we need to compute the joint PMF value PX;Y (i; j). We
can do this by the multiplication rule from Chapter 1:

PX;Y (i; j) = P (X = i; Y = j) = PX(i)P (Y = jjX = i): (16.4)

The probability PX(i) on the right side of (16.4) is a Poisson probability and the other probability
P (Y = jjX = i) is a Binomial probability. We have

PX(i) =
exp(�1)

i!
(16.5)

P (Y = jjX = i) =

 
i+ 1

j

!
(1=2)i+1 (16.6)

The formula (16.5) arises from Step 1 of the experiment and is valid because this is the probability
that the Poisson RV X with mean 1 takes on the value i (see Appendix A of your textbook).
The formula (16.6) arises from Step 2 of the experiment: Given X = i, Y conditionally has the
Binomial(n; p) distribution with n = i + 1 and p = 1=2; the conditional probability of the event
fY = jg given the event fX = ig is then the probability that a Binomial(n = i + 1; p = 1=2) RV
takes on the value j, which we may see from Appendix A of the textbook to be equal to the right
side of (16.6).

We have shown that the joint PMF of X;Y is given by:

PX;Y (i; j) =

8<
:
�i+1
j

�exp(�1)
i!2i+1

; (i; j) 2 S
0; elsewhere

It is interesting to determine the marginal PMF of Y . The values of Y are nonnegative integers

j = 0; 1; 2; � � � :
For each such j, we compute P Y (j) by means of the following formulas:

P Y (0) =
1X
i=0

exp(�1)
i!2i+1

: (16.7)

P Y (j) =
1X

i=j�1

 
i+ 1

j

!
exp(�1)
i!2i+1

; j = 1; 2; � � � (16.8)
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The reader can obtain the limits on the summations in (16.7)-(16.8) by plotting the points in S
and then taking a \horizontal slice" through all points (i; j) in S for which the second coordinate
j is �xed. We shall examine the sums (16.7)-(16.8) further in Recitation 6. (It turns out that Y
does not have a Poisson distribution, even though X has a Poisson distribution.)

16.2 Joint PDF Introduction

Suppose X and Y are both continuous RV's. Jointly, suppose the random pair (X;Y ) ranges
continuously through some region of the xy-plane. The joint PDF fX;Y (x; y) is then the function
of two variables satisfying the properties:

(i): fX;Y (x; y) � 0 for all x; y.

(ii):
R1
�1

R1
�1 fX;Y (x; y)dxdy = 1.

(iii): For every subregion E of the xy-plane,

P [(X;Y ) 2 E] =
ZZ

E
fX;Y (x; y)dxdy: (16.9)

(iv): The marginal PDF fX(x) can be computed by

fX(x) =

Z 1

�1
fX;Y (x; y)dy; �1 < x <1:

(v): The marginal PDF fY (y) can be computed by

fY (y) =

Z 1

�1
fX;Y (x; y)dx; �1 < y <1:

(Note: It turns out that if (X;Y ) is jointly continuously distributed, then the individual RV's X;Y
are each continuously distributed over the real line. This follows from the formulas in (iv) and (v)
for computing the marginal densities.)

Example 16.3. Suppose you have some region R of the xy-plane of positive �nite area. Suppose
your random experiment is to \select a point (X;Y ) at random from R". Then, in the absence
of any further information, you would assume that the joint density fX;Y (x; y) is constant over R.
This is what the joint density would have to be in this case:

fX;Y (x; y) =

(
1

area(R) ; (x; y) 2 R
0; (x; y) 62 R
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The area of R can be computed by the double integral

area(R) =

ZZ
R
dxdy:

The reader can easily show that the constant 1=area(R) is the unique constant value over R that
will make the property(ii) of joint density be true, namely, the property that the double integral of
the joint PDF be equal to one. Using formula (16.9), one can easily show in this case that

P [(X;Y ) 2 E] = area(E)

area(R)
;

for any subregion E of R. The random pair (X;Y ) of this example is said to be uniformly distributed

over R. We shall occasionally use uniformly distributed pairs of RV's as examples to illustrate
various concepts encountered in Chapter 4.

Example 16.4. Let R be the unit square region sketched below.

x

y

1

1

R

0

A pair of random variables X;Y has the following joint density fX;Y (x; y):

fX;Y (x; y) =

(
C(x+ y); (x; y) 2 R

0; elsewhere

We will do the following:
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(a) Find C.

(b) Compute P [0 � X � 1=4; 3=4 � Y � 1]

(c) Compute P [X > 2Y ]

(d) Compute P [X2 + Y 2 � 1]

(e) Find fX(x) and fY (y).

Solution to (a). The PDF must integrate to 1 over the entire xy-plane. Therefore,

C =
1Z 1

�1

Z 1

�1
fX;Y (x; y)dxdy

=
1Z 1

0

Z 1

0
(x+ y)dxdy

= 1:

Solution to (b). Let E be the square subregion of R sketched below.

x

y

1

1

R

0 1/4

3/4 E

Then, we have

P [0 � X � 1=4; 3=4 � Y � 1] = P [(X;Y ) 2 E]
=

Z Z
E
fX;Y (x; y)dydx

=

Z 1=4

0

Z 1

3=4
(x+ y)dydx
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=

Z 1=4

0

h
xy + y2=2

iy=1
y=3=4

dx

=

Z 1=4

0
(x=4 + 7=32)dx = 1=16:

Solution to (c). Let E be the following triangular subregion of R:

x

y

1

1

0

E

x=2y

R

We have

P [X > 2Y ] =

Z Z
E
fX;Y (x; y)dydx

=

Z 1

0

Z x=2

0
(x+ y)dydx

=

Z 1

0

h
xy + y2=2

iy=x=2
y=0

dx

=

Z 1

0
(5x2=8)dx = 5=24:

Solution to (d). Let E be the circular sector sketched at the top of the next page:
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x

y

1

0
1

R

E

x     +    y   =  122

Then

P [X2 + Y 2 � 1] =

Z Z
E
fX;Y (x; y)dydx

=

Z 1

0

Z p
1�x2

0
(x+ y)dydx

=

Z 1

0

h
xy + y2=2

iy=p1�x2

y=0
dx

=

Z 1

0
[x
p
1� x2 + (1� x2)=2]dx

=
h
(�1=3)(1 � x2)3=2 + (1=2)(x � x3=3)

i1
0
= 2=3

Solution to (e). Let x be �xed in the range 0 � x � 1. Then:

fX(x) =

Z 1

�1
fX;Y (x; y)dy =

Z 1

0
(x+ y)dy = x+ (1=2):

The density fX(x) must be zero for all other x, because for such x the vertical slice through x does
not touch the region R. We conclude

fX(x) =

(
x+ (1=2); 0 � x � 1

0; elsewhere

By symmetry,

fY (y) =

(
y + (1=2); 0 � y � 1

0; elsewhere
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17.1 Another Joint PDF Example

Example 17.1. Let R be the triangular region sketched below:

x

y

0 1 2

1

y=x y=2-x

R

Let (X;Y ) be uniformly distributed over R. The area of R is 1. Therefore, the joint density is
given by

fX;Y (x; y) =

(
1; (x; y) 2 R
0; elsewhere

17
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Are the random variables X and Y individually uniformly distributed? Let us see whether or not
this is true. To �nd fX(x), we �x an x in the interval 0 � x � 2 and integrate the joint density
with respect to y. The range over which y is integrated depends upon whether 0 � x � 1 or
1 < x � 2. In the �rst case, y ranges from y = 0 to y = x (visualize a vertical slice cutting through
R, extending upward from an x satisfying 0 � x � 1). In the second case, y ranges from y = 0
to y = 2 � x (visualize a vertical slice cutting through R, extending upward from an x satisfying
1 < x � 2). This gives us

fX(x) =

Z x

0
1 dy = x; 0 � x � 1

=

Z 2�x

0
1 dy = 2� x; 1 < x � 2

The complete description of fX(x) is therefore:

fX(x) =

8><
>:

x; 0 � x � 1
2� x; 1 < x � 2

0; elsewhere

To �nd the marginal density fY (y), �x a y satisfying 0 � y � 1 on the y-axis and make a
horizonal slice through y and the region R. The slice extends from x = y to x = 2� y. This gives
us

fY (y) =

Z 2�y

y
1 dy = 2� 2y; 0 � y � 1:

The complete description of fY (y) is therefore:

fY (y) =

(
2� 2y; 0 � y � 1

0; elsewhere

We conclude from the preceding example that if (X;Y ) is uniformly distributed over a subregion
of the plane, then it may happen that the marginal densities are not uniform.

Exercise. Let (X;Y ) be uniformly distributed over the rectangular rection whose four vertices
are the points (a; c), (a; d), (b; c), (b; d). (Assume that a < b and c < d.) Prove that X must be
Uniform(a; b) and Y must be Uniform(c; d).

As a result of the preceding exercise, you see one special case in which a joint uniform distribu-
tion yields marginal uniform distributions, namely, when the joint distribution is over a rectangle
whose two dimensions are parallel to the x and y axes.
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17.2 Application: MAP Detector for Discrete Channel Model

Suppose we have a discrete communication channel model: this means the input is discrete and
the output is discrete. At the receiving end of the channel, one can try to design a detector as
indicated in the following block diagram:

X ! channel ! Y ! detector ! X̂

The detector output X̂ is a function of the channel output Y , and is intended to estimate X. In
general, there may be many possible detectors that one could use. For example, suppose that X
takes the values 0; 1; 2 and that Y also takes the values 0; 1; 2. To de�ne the detector to be used,
one would have to �ll in the question marks below:

Y = 0 ) X̂ = ?

Y = 1 ) X̂ = ?

Y = 2 ) X̂ = ?

Each question mark can be �lled in with one of three possible estimates for X (namely 0; 1, or 2).
Thus, in this case, there are 3 � 3 � 3 = 27 possible detectors that could be used. We want to �nd
the detector for which the error probability P [X 6= X̂] is minimized. This is the detector that does
the best job, and is the detector we will want to use in our system. This best detector is called
the MAP detector. (We will explain later what the initials \MAP" stand for.) One could try to
�nd the MAP detector by a brute force approach, that is, one could compute P [X 6= X̂] for every
possible detector until the detector is found which minimizes P [X 6= X̂ ]. This approach will be
ineÆcient when X and Y take a large number of values. (If X;Y each take 10 values, you'd have to
check (10)10 di�erent detectors!) Fortunately, we can narrow our search. It is known that the MAP
detector, if Y = y, generates the estimate X̂ = x for which the joint PMF PX;Y (x; y) is maximized
over all possible inputs x to the channel (as y in PX;Y (x; y) is held �xed). In other words, the
MAP detector chooses the most likely channel input for the given channel output. Rather than
give a general proof that the MAP detector de�ned in this way will minimize P [X 6= X̂ ], we will
now work out an example of MAP detector design; during the workout of this example, the reader
may become convinced that choosing the MAP detector the way we do is the proper thing to do.

Example 17.2. Let the channel matrix for a discrete channel be

0
B@
Y = 0 Y = 1 Y = 2

X = 0 3=42 36=42 3=42
X = 1 9=21 6=21 6=21
X = 2 18=37 18=37 1=37

1
CA (17.1)

We assume that the channel input probabilities are

[PX(0) PX(1) PX(2)] = [:42 :21 :37]:
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Let us design the MAP detector for the given channel and input to the channel. First, we compute
the joint PMF matrix by multiplying each row of the channel matrix (17.1) by the corresponding
input probability. This gives us the following joint PMF matrix:

0
B@
Y = 0 Y = 1 Y = 2

X = 0 0:03 0:36 0:03
X = 1 0:09 0:06 0:06
X = 2 0:18 0:18 0:01

1
CA (17.2)

We can now easily design the MAP detector from the array (17.2), as follows:

� For each possible MAP detector input y 2 f0; 1; 2g, look down the column labelled Y = y
of the joint PMF array to �nd the largest entry in that column. (If there are two or more
entries which are the largest, choose any of them.)

� Take the MAP detector output for input Y = y to be the input x value corresponding to the
largest entry that was chosen in the Y = y column.

In the following, I have placed a box around the largest entry in each column of the joint PMF
array:

0
B@
Y = 0 Y = 1 Y = 2

X = 0 0:03 0.36 0:03

X = 1 0:09 0:06 0.06

X = 2 0.18 0:18 0:01

1
CA

Looking at the x-value corresponding to the location of each boxed in value, we see that the MAP
detector can be described as follows:

Y = 0 ) X̂ = 2

Y = 1 ) X̂ = 0

Y = 2 ) X̂ = 1

Now let us compute the error probability for the MAP detector. We have

P [X 6= X̂] = 1� P [X = X̂]

= 1� (P [X = 0; X̂ = 0] + P [X = 1; X̂ = 1] + P [X = 2; X̂ = 2])

= 1� (P [X = 0; Y = 1] + P [X = 1; Y = 2] + P [X = 2; Y = 0])

= 1� (:36 + :06 + :18) = :4

From this calculation, it should be clear that if we had chosen our detector in any other way,
then the error probability would have been bigger than :4. For, notice that the three probabilities
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P [X = 2; Y = 0], P [X = 0; Y = 1], and P [X = 1; Y = 2] are the largest probabilities in the
�rst, second, and third columns of the PX;Y matrix, respectively. If the detector had been chosen
di�erently, at least one of these probabilities would have been replaced in the calculation above by
some smaller probability in the same column, thereby increasing P [X 6= X̂].

A Useful Formula

From the calculation of the error probability P [X 6= X̂ ] that we did above, the reader can see
that, in general, the error probability for the MAP detector is computed in the following way:

minimum P [X 6= X̂] = 1�(sum of largest prob. in each col. of PX;Y array)

Discussion. We explain where the terminology \MAP" comes from. We can factor the joint
PMF as

PX;Y (x; y) = P [X = x; Y = y] = P Y (y)P [X = xjY = y]: (17.3)

For each �xed y that can be the input to the MAP detector, the MAP detector chooses as its output
that x value for which PX;Y (x; y) is a maximum. By the preceding equation, this will be the same
as the x which maximizes the \backward probability" P [X = xjY = y]. (This is because the factor
P Y (y) on the right side of (17.3) is treated as a constant when y is held �xed.) In Latin, the
backward probability P [X = xjY = y] is referred to as \aposteriori probability". Thus, the MAP
detector operates on the principle of \maximum backward probability" or \maximum aposteriori
probability", which is MAP for short.

Exercise. Consider the discrete channel with input alphabet f0; 1; 2g, output alphabet f0; 1; 2g,
and channel matrix 2

64 1� p p=2 p=2
p=2 1� p p=2
p=2 p=2 1� p

3
75

Let the input X to the channel be equiprobable. Find a range of p values for which the MAP
detector simply takes X̂ = Y . (In other words, you make a guess that the input is the observed
output.)

Remark. In Example 17.2, the best error probability is 0:40. This may seem to the reader to
not be very good performance. (For example, if we run thousands of inputs through the channel,
the MAP detector is only going to correctly guess about 60% of them.) To get better performance,
one can consider batch processing. For example, suppose we try to design a detector which processes
two outputs at a time (in response to two inputs at a time), as indicated in the following block
diagram:

X1;X2 ! channel ! Y1; Y2 ! detector ! X̂1; X̂2
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One could see whether, for the channel model in Example 17.2, there is such a \batch processing
detector" which achieves average error probability

(P [X1 6= X̂1] + P [X2 6= X̂2])=2 < 0:40:

One can always design a communication system for which such an improvement is possible, provided

� The size of the batch is big enough (that is, the batch may have to be of size bigger than
two);

� You encode the batch of inputs appropriately before sending them through the channel; and

� You are not trying to transmit data at a rate which would exceed the capacity of the channel.

In a more advanced course (EE 5581, Information Theory) you would learn about the communica-
tion principles encapsulated in the three preceding \bullets". In particular, you would be able to
formulate the notion of the capacity of a channel in a precise mathematical way. You would also
learn about how to properly encode the channel inputs (using linear block error-correcting codes).

We have discussed the MAP detector for the discrete communication channel model. Later, we
will be able to develop the MAP detector for the semicontinuous communication channel model;
this is the channel model in which the input is discrete and the output is continuous. The semi-
continuous channel is very common in practice. For example, the additive noise channel model is a
semicontinuous channel model when the noise you add to the input is continuous (such as Gaussian
noise).



Lecture 18

Chapters 4-5 Part 4

In Lecture 18, I talk about the joint CDF FX;Y (x; y) and I explain about the concept of independent
RV's X;Y .

18.1 Joint CDF FX;Y (x; y)

Let X;Y be an arbitrary pair of random variables. The joint cumulative distribution function (joint
CDF) of these variables is the function FX;Y (x; y) de�ned by

FX;Y (x; y)
�
= P [X � x; Y � y]; all (x; y) in xy � plane:

In order to lend more insight to this de�nition, for each point (x�; y�) in the plane, let E(x�; y�) be
the subregion of the xy-plane sketched as follows:

(x  , y   )* *

(x  , y   )* *

x

y

E

23
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Notice that E(x�; y�) is the in�nite quadrant of the xy-plane which extends to the left and below
the point (x�; y�). Mathematically, we can describe this set as

E(x�; y�) = f(x; y) : x � x�; y � y�g:

We have the following geometric interpretation of the joint CDF value FX;Y (x
�; y�):

FX;Y (x
�; y�) = P [(X;Y ) 2 E(x�; y�)]:

The concept of joint CDF FX;Y (x; y) makes sense no matter what type of RV X is and no
matter what type of RV Y is. Thus, X could be discrete, continuous or mixed, and Y could be
discrete, continuous, or mixed, which gives 9 possibilities for the pair (X;Y ). For this reason, the
joint CDF is sometimes useful when we want to put forth some new concept for the pair (X;Y ):
we can de�ne the concept using the joint CDF and have the concept be valid in general without
having to consider a number of special cases.

If X;Y are discrete, we can use the joint PMF to compute the joint CDF as the following double
sum:

FX;Y (x; y) =
X
u�x

X
v�y

PX;Y (u; v):

On the other hand, if X;Y are jointly continuous, we can use the joint PDF to compute the joint
CDF as the following double integral:

FX;Y (x; y) =

Z y

�1

Z x

�1
fX;Y (u; v)dudv: (18.1)

The concept of joint CDF has proved to be more useful for the case of jointly continuous RV's
X;Y than for the case of discrete RV's. Consequently, in the section which follows, we discuss
special things we can do concerning the joint CDF for jointly continuous RV's.

18.1.1 Joint CDF of Jointly Continuous RV's

Throughout this section, we take X;Y to be jointly continuous RV's. It is clear from (18.1) that
we can obtain the joint PDF fX;Y (x; y) from the joint CDF FX;Y (x; y) as follows:

fX;Y (x; y) =
@2

@x@y
FX;Y (x; y): (18.2)

Or, one can do the partial derivatives in (18.2) in the reverse order.

Example 18.1. Suppose (X;Y ) is jointly distributed in the square

R = f(x; y) : 0 � x � 1; 0 � y � 1g:
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Also, suppose the joint CDF is speci�ed in R as

FX;Y (x; y) = (1=2)x2y + (1=2)xy2; (x; y) 2 R: (18.3)

We �nd fX;Y (x; y) using (18.2). Taking the partial derivative of FX;Y (x; y) with respect to y, we
obtain

@FX;Y (x; y)

@y
= (1=2)x2 + xy:

Taking the partial with respect to x then gives:

@f(1=2)x2 + xyg
@x

= x+ y:

We conclude that

fX;Y (x; y) =

(
x+ y; (x; y) 2 R

0; elsewhere

Example 18.2. We work out the joint CDF for the joint density

fX;Y (x; y) =

(
e�(x+y); x � 0; y � 0

0; elsewhere

If (x; y) is in the 1st quadrant, then

FX;Y (x; y) =

Z x

0

Z y

0
e�(x+y)dydx = (1� e�x)(1� e�y):

Since the joint CDF vanishes outside of the �rst quadrant, we may write

FX;Y (x; y) = (1� e�x)(1� e�y)u(x)u(y):

Useful Formula

Let R be the rectangular region in the following sketch:

x

y

R

12

3 4
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Then,
P [(X;Y ) 2 R] = FX;Y (1)� FX;Y (2) + FX;Y (3)� FX;Y (4): (18.4)

In other words, the probability (X;Y ) falls in R is computable from the joint CDF by adding
together the joint CDF values at the upper left and lower right corner points of R, and then
subtracting o� from this sum the joint CDF values at the remaining two corner points of R.

Proof of Useful Formula (18.4): We use the following �gure:

R
2 1

3 4

A

B C

We have

F (1) = P (R) + P (A) + P (B) + P (C)

F (2) = P (A) + P (B)

F (3) = P (B)

F (4) = P (B) + P (C)

(We have dropped the subscripts X;Y from FX;Y and abbreviated P [(X;Y ) 2 A] as P (A), etc.)
Plugging these expressions for F (1) through F (4) in the right side of (18.4), we obtain cancellation
of all terms except the left side of (18.4).

Example 18.3. In the previous example, suppose that b > a > 0, and that d > c > 0. Let us
compute

P [a � X � b; c � Y � d]:

By our useful formula, we obtain

F (b; d)� F (a; d) + F (a; c) � F (b; c);

which becomes

(1�e�b)(1�e�d)�(1�e�a)(1�e�d)+(1�e�a)(1�e�c)�(1�e�b)(1�e�c) = (e�a�e�b)(e�c�e�d):
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Exercise. Let R be the L-shaped region in the xy-plane depicted below, and let F be the joint
CDF of a pair of jointly continuous RV's X;Y .

1

2
3

45

6

R

Show that
P [(X;Y ) 2 R] = F (1) � F (2) + F (3) � F (4) + F (5)� F (6):

Hint: Partition R into two rectangles, and then use formula (18.4) on each of the rectangles.

18.2 Independent X; Y

We de�ne RV's X;Y to be (statistically) independent if the following holds:

FX;Y (x; y) = FX(x)FY (y); for all x; y: (18.5)

In other words, independence means the joint CDF factors into the product of the two marginal
CDF's. If X;Y are not independent, then we say that they are (statistically) dependent.

The de�ning statement (18.5) for independence is equivalent to saying that

P [X 2 A; Y 2 B] = P [X 2 A]P [Y 2 B];

for any two subsets A;B of the real line. In particular, we can say for independent RV's X;Y that

P [a � X � b; c � Y � d] = P [a � X � b]P [c � Y � d]:

The merit to de�ning independence via equation (18.5) is that the de�nition makes sense re-
gardless of the type of RV's X;Y are. In the special cases of discrete X;Y or of jointly continuous
X;Y , then we can give simpler formulations of the independence concept, which avoid dealing with
the joint CDF. We do this in the two sections which follow.



LECTURE 18. CHAPTERS 4-5 PART 4 28

18.2.1 Independent Discrete RV's

To verify independence for discrete X;Y , you just have to show that the joint PMF factors as

PX;Y (x; y) = PX(x)P Y (y); (18.6)

for all values x of X and all values y of Y .

Example 18.4. Let the joint PMF table of discrete RV's X;Y be as follows:

 Y = 1 Y = 2 Y = 3

X = 0 0:15 0:06 0:09
X = 2 0:35 0:14 0:21

!

I explain three methods for showing that X;Y are independent.

Method 1: Calculate the row sums and the column sums. In each position in the joint PMF

matrix, check that the entry is equal to the product of the row sum for that row and the

column sum for that column. In our case here, I just enter in the row sums and column sums
as headers to the rows and columns:

 0:5 0:2 0:3

0:3 0:15 0:06 0:09
0:7 0:35 0:14 0:21

!

In each of the 6 positions, I do a product check, for example, two of these checks would be:

0:15 = (0:30)(0:5)

0:14 = (0:7)(0:2)

The reader can do the other four checks.

Method 2: Divide each row by the row sum, and see if all the resulting \normalized rows" are

equal to the same probability vector. In our case here, dividing each row by its row sum gives
the same prob vector, namely,

[0:5; 0:2; 0:3]:

Method 3: Divide each column by the column sum, and see if all the resulting \normalized
columns" are equal to the same probability vector. In our case here, dividing each column
by its column sum gives the same prob vector"

0:3
0:7

#
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Some brief remarks are in order as to why the three separate methods discussed in Example
18.4 work. Method 1 works because it veri�es (18.6). (The row sums are the PX(x) values and the
column sums are the P Y (y) values.) Method 2 works because you are verifying that

P (Y = yjX = x) = P (Y = y); (18.7)

for all x; y. (Dividing each row by the row sum gives the conditional probabilities on the left side
of (18.7), and (18.7) is equivalent to (18.6) if one writes down the ratio PX;Y (x; y)=PX (x) for the
left side of (18.7).) Method 3 works by reasoning similar to what was just given for Method 2.
(Dividing each column by the column sum gives the backward conditional probs P (X = xjY = y).)

18.2.2 Independent Jointly Continuous RV's

To verify independence for jointly continuous X;Y , you just have to show that the joint PDF
factors as

fX;Y (x; y) = fX(x)fY (y); all (x; y) in xy � plane:

We present two nice rules which allow us to tell by inspection of the joint density whether X
and Y are statistically independent or statistically dependent. You should apply these two rules in
the order indicated.

Cartesian Product Rule: We call a subset S of the xy-plane a Cartesian product set if it takes
the form

S = A�B = f(x; y) : x 2 A; y 2 Bg;
for some subsets A;B of the real line.1 Suppose the joint density fX;Y (x; y) of random
variables X;Y takes positive values over a subregion of the xy-plane which is not a Cartesian
product set. Then, the random variables X;Y are statistically dependent.

Factorization Rule: Suppose the joint density fX;Y (x; y) of random variables X;Y takes positive
values over a subregion of the xy-plane which is a Cartesian product set S = A � B. Then
X;Y are independent if and only if there is some factorization of the joint density

fX;Y (x; y) = �(x)	(y) (18.8)

which is valid over S, where �(x) is a function of x alone that is de�ned for x 2 A, and
	(y) is a function of y alone that is de�ned for y 2 B. The function �(x) turns out to be
a constant multiple of the density fX(x), and the function 	(y) turns out to be a constant
multiple of the density fY (y).

1For example, any rectangular region whose two dimensions are parallel to the coordinate axes is a Cartesian

product set.
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Example 18.5. Suppose the joint density is of the form

fX;Y (x; y) = Ce�(16x
2+9y2)=288;

for some positive constant C. The density factors as

fX;Y (x; y) =
hp
Ce�x

2=18
i hp

Ce�y
2=32

i
over the entire xy-plane, and the entire xy-plane is a Cartesian product set. By the Factorization
Rule, X and Y are independent, and the X;Y marginal densities take the form

fX(x) = C1e
�x2=18

fY (y) = C2e
�y2=32

where C1 and C2 are constants. It is clear from the form of these two marginal densities that X is
Gaussian with mean �X = 0 and variance �2X = 9, whereas Y is Gaussian with mean �Y = 0 and
variance �2Y = 16.

Example 18.6. Assume that

fX;Y (x; y) =

(
e�(x+y); x � 0; y � 0

0; elsewhere

The region of positivity of this density is the �rst quadrant of the xy-plane, which is a Cartesian
product set. We have an obvious factorization

e�(x+y) = e�xe�y

over the �rst quadrant. Therefore X;Y are independent and the two marginal densities are

fX(x) = e�xu(x)
fY (y) = e�yu(y)

Example 18.7. Let the joint density be equal to x+ y over the unit square

f(x; y) : 0 � x � 1; 0 � y � 1g; (18.9)

and zero elsewhere. The unit square is a Cartesian product set. However, the random variables X
and Y are statistically dependent because x+ y does not factor into a function of x alone times a
function of y alone over the unit square.

Example 18.8. Let fX;Y (x; y) = Cxy over the unit square (18.9) and zero elsewhere. The unit
square is the Cartesian product set

fx : 0 � x � 1g � fy : 0 � y � 1g:
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There is clearly a factorization over the unit square:

fX;Y (x; y) = (
p
Cx)(

p
Cy): (18.10)

The Factorization Rule tells us that X;Y are independent. The two marginal densities fX(x)
and fY (y) are respectively constant multiples of x and y over the sets fx : 0 � x � 1g and
fy : 0 � y � 1g. With a little more work, we see that these two densities are:

fX(x)
�
=

(
2x; 0 � x � 1
0; elsewhere

fY (y)
�
=

(
2y; 0 � y � 1
0; elsewhere

Therefore, C is 4.

Example 18.9. Let the joint density be equal to Cxy over the triangular region f(x; y) : 0 �
x � y � 1g, and equal to zero elsewhere. This triangular region is not a Cartesian product set.
By the Cartesion Product Rule, X;Y are statistically dependent. This example is tricky: Some
students might try to conclude that X and Y are independent based on the Factorization Rule,
but the factorization (18.10) does not hold over a Cartesian product set, only over a region which
is not a Cartesian product set.

Example 18.10. Suppose the region where fX;Y (x; y) takes positive values is the region inside
the circle x2 + y2 = 1. This region is not a Cartesian product set. Therefore, X;Y are dependent.

Exercise. Let the joint density be

fX;Y (x; y) =

8>>>>><
>>>>>:

4=9; 1 � x � 2; 1 � y � 2
2=9; 3 � x � 4; 1 � y � 2
2=9; 1 � x � 2; 3 � y � 4
1=9; 3 � x � 4; 3 � y � 4
0; elsewhere

First, argue that the region of positivity of fX;Y (x; y) is a Cartesian product set. Then, apply the
Factorization Rule to show that X;Y are independent.



Lecture 19

Chapters 4-5 Part 5

19.1 Computing E[�(X; Y )]

Let �(X;Y ) be a function of the random pair (X;Y ). Then you compute E[�(X;Y )] as follows:

� If X and Y are discrete, you compute the double sum

E[�(X;Y )] =
X
x;y

�(x; y)PX;Y (x; y):

� If X;Y are jointly continuous, you compute the double integral

E[�(X;Y )] =

Z 1

�1

Z 1

�1
�(x; y)fX;Y (x; y)dxdy:

19.1.1 Special Case: E[X + Y ]

Possibly the most common function �(X;Y ) needed in probability is the sum function

�(X + Y ) = X + Y:

In this case, you can write
E[X + Y ] = E[X] +E[Y ]: (19.1)

In other words, you can take the expected value term by term. To compute the two separate terms
of the right hand side of (19.1), you'd only need to know the marginal dist's of X and Y . Here I
prove (19.1) for the case in which X;Y are jointly continuous:

E[X + Y ] =

Z Z
(x+ y)fX;Y (x; y)dxdy

=

Z
[

Z
xfX;Y (x; y)dy]dx +

Z
[

Z
yfX;Y (x; y)dx]dy

32



LECTURE 19. CHAPTERS 4-5 PART 5 33

=

Z
x[

Z
fX;Y (x; y)dy]dx +

Z
y[

Z
fX;Y (x; y)dx]dy

=

Z
xfX(x)dx+

Z
yfY (y)dy

= E[X] +E[Y ]

You can easily modify this argument for the case when X;Y are discrete. In addition, equation
(19.1) is true no matter what type of RV X is and no matter what type of RV Y is.

More generally, you can take the expected value of any linear combination of RV's term by
term:

E

"
nX
i=1

ciXi

#
=

nX
i=1

ciE[Xi]:

In the preceding, the ci's are constants and the Xi's are RV's.

19.1.2 Special Case: E[g1(X)g2(Y )], for X; Y independent

Suppose X;Y are independent RV's. Then, you can easily compute E[g1(X)g2(Y )], the expected
value of any function of X times any function of Y . Here is how you do it:

E[g1(X)g2(Y )] = E[g1(X)]E[g2(Y )]; X; Y independent (19.2)

In other words, you can compute E[g1(X)] and E[g2(Y )] separately, and then multiply the two
results together. These two separate expected values would involve only the separate marginal
densities, not the joint density. It is easy to prove (19.2). Here I do it for the case in which X;Y
are discrete independent RV's:

E[g1(X)g2(Y )] =
X
x

X
y

g1(x)g2(y)P
X;Y (x; y)

=
X
x

X
y

g1(x)g2(y)P
X(x)P Y (y)

=
X
x

g1(x)P
X(x)[

X
y

g2(y)P
Y (y)]

=
X
x

g1(x)P
X(x)E[g2(Y )]

= E[g2(Y )]
X
x

g1(x)P
X(x)

= E[g2(Y )]E[g1(X)]

Warning: Do not use formula (19.2) unless X;Y are independent!
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19.2 Introduction to rX;Y , �X;Y , �X;Y

We begin to discuss three parameters of a random pair (X;Y ) which are almost as famous as the
three tenors. These three parameters, which will be important to us for much of the rest of the
semester, are de�ned as follows:

� The correlation of X and Y is denoted rX;Y . It is de�ned by

rX;Y
�
= E[XY ]:

In other words, the correlation of two RV's is just the expected value of their product.

� The covariance of X and Y is denoted �X;Y or Cov(X;Y ). It is de�ned by

�X;Y = Cov(X;Y )
�
= E[(X � �X)(Y � �Y )]:

In other words, you center each RV X;Y about its mean by doing the operations X��X and
Y � �Y . Then, you compute the correlation of X � �X and Y ��Y : this is the covariance of
X and Y .

� The correlation coeÆcient of X;Y is denoted �X;Y . It is de�ned by

�X;Y
�
=

�X;Y
�X�Y

:

In other words, to compute the correlation coeÆcient, you simply divide the covariance by
the product of the standard deviations of the two RV's. If in a given context, we understand
what the two RV's X;Y are, it is customary to drop the subscripts from �X;Y and to refer to
it simply as �.

In the rest of this section, we will present examples in which we compute the values of the
parameters rX;Y , �X;Y , �X;Y . Before we do that, I list a few facts about these parameters.

Fact 1: The three parameters are symmetric in X;Y . That is,

rX;Y = rY;X

Cov(X;Y ) = Cov(Y;X)

�X;Y = �Y;X

Fact 2: Variance is a special case of covariance. That is,

V ar(X) = Cov(X;X):
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Fact 3: Covariance may be computed from correlation via the following formula:

Cov(X;Y ) = E[XY ]� �X�Y (19.3)

Fact 4: If X;Y are independent, then the three parameters are immediately computable as:

rX;Y = E[XY ] = E[X]E[Y ]

Cov(X;Y ) = �X;Y = 0

�X;Y = 0

Facts 1 and 2 are trivial consequences of the de�nitions of the three parameters. Fact 4 follows
from formula (19.2). Fact 3 can be proved as follows:

Cov(X;Y ) = E[(X � �X)(Y � �Y )]

= E[XY � �XY � �YX + �X�Y ]

= E[XY ] +E[��XY ] +E[��YX] +E[�X�Y ]

= E[XY ]� �XE[Y ]� �YE[X] + �X�Y

= E[XY ]� �X�Y � �Y �X + �X�Y

= E[XY ]� �X�Y

In equation (19.3), notice what happens when we replace Y by X:

Cov(X;X) = V ar(X) = E[X2]� �2X :

This is the \second moment formula" for computing variance that we derived back in the Chapter
2-3 Notes. It is interesting to see that this earlier formula follows from the present formula (19.3).

Example 19.1. Let X;Y be discrete RV's each taking the values 0; 1; 2. The following is the
joint PMF array:

0
B@
Y = 0 Y = 1 Y = 2

X = 0 0:1 0 0:2
X = 1 :05 0:2 0:3
X = 2 0:1 0 :05

1
CA

We compute the values of the three parameters rX;Y , �X;Y , �X;Y . First, notice from the joint PMF
array that products of the form xy are equal to zero all along the �rst row (where x = 0) and all
along the �rst column (where y = 0). That leaves just 4 nonzero products in computing E[XY ]:

E[XY ] = (1 � 1)0:2 + (1 � 2)0:3 + (2 � 1)0 + (2 � 2):05 = 1

So, for our two random variables X;Y , the correlation is

rX;Y = E[XY ] = 1:
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Let us now compute the covariance. We use formula (19.3). We need to compute �X ; �Y . Taking
the row sums of the joint PMF array, we see that

[PX(0) PX(1) PX(2)] = [0:3 :55 :15]

from which it follows that
�X = 1(:55) + 2(:15) = :85:

Taking the column sums of the joint PMF array, we obtain

[P Y (0) P Y (1) P Y (2)] = [:25 0:2 :55];

from which we obtain
�Y = 1(0:2) + 2(:55) = 1:3:

We conclude that
�X;Y = rX;Y � (:85)(1:3) = �0:105:

Finally, in order to compute the correlation coeÆcient �X;Y from the covariance �X;Y , we need the
variance of each RV X;Y :

�2X = E[X2]� �2X = 1(:55) + 4(:15) � (:85)2 = 0:4275

�2Y = E[Y 2]� �2Y = 1(0:2) + 4(:55) � (1:3)2 = 0:7100

Therefore,

�X;Y =
�X;Y
�X�Y

=
�0:105p

0:4275
p
0:7100

= �0:1906:

Before proceeding with further examples, now is a good time to list three important properties
of �X;Y :

Property 1 of �X;Y : The correlation coeÆcient is always between �1 and 1:

�1 � �X;Y � 1:

Property 2 of �X;Y : If the RV's X;Y are independent, then the correlation coeÆcient �X;Y is
equal to 0.

Property 3 of �X;Y : If the correlation coeÆcient �X;Y is equal to �1, then there is a straight
line relationship between X and Y . Speci�cally, if �X;Y = +1, there is a unique straight line
y = Ax + B in the xy-plane, with positive slope A, such that the random pair (X;Y ) will
always fall on this straight line. On the other hand, if �X;Y = �1, there is a unique straight
line y = Ax + B in the xy-plane, with negative slope A, such that the random pair (X;Y )
will always fall on this straight line.



LECTURE 19. CHAPTERS 4-5 PART 5 37

Property 2 is just a restatement of part of Fact 4, which we have restated for emphasis. Prop-
erties 1 and 3 are a bit deeper than Property 2: we will prove Properties 1 and 3 later.

Example 19.2. Let random pair (X;Y ) be chosen uniformly from the square region

R = f(x; y) : 0 � x � 1; 0 � y � 1g:
We compute rX;Y , �X;Y , and �X;Y . The region R is a Cartesian product set, and we have the
factorization

fX;Y (x; y) = �(x)	(y); (x; y) 2 R;
where

�(x) = 1; 	(y) = 1:

Therefore, X;Y are independent Uniform(0,1) RV's. By Fact 4,

rX;Y = E[XY ] = E[X]E[Y ] = (1=2)(1=2) = 1=4:

Also from Fact 4, we can immediately say that both the covariance �X;Y and the correlation
coeÆcient �X;Y are equal to 0.

Example 19.3. Let random pair (X;Y ) be chosen uniformly from the circular region

R = f(x; y) : x2 + y2 � 1g:
We compute rX;Y , �X;Y , and �X;Y . The area of R is �. Therefore, fX;Y (x; y) is equal to 1=� inside
R, and so

E[XY ] =

ZZ
R
xy

�
1

�

�
dxdy:

I now switch the double integral from rectangular coordinates x; y to polar coordinates r; �:

E[XY ] = (1=�)

Z 2�

0

Z 1

0
(r cos �)(r sin �)rdrd�

= (1=�)

�Z 1

0
r3dr

��Z 2�

0
sin � cos �d�

�

The reader can easily show that the above integral with respect to d� is equal to zero. We have
shown that

rX;Y = E[XY ] = 0:

By the \center of gravity rule" (covered in the next section), the point (E[X]; E[Y ]) is the center
of gravity of the region R. By the circular symmetry of the region R, the center of gravity of R is
the origin (0; 0) in the xy-plane. Therefore,

(E[X]; E[Y ]) = (0; 0)

E[X] = 0

E[Y ] = 0
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We conclude that

Cov(X;Y ) = rX;Y � �X�Y = 0

�X;Y =
Cov(X;Y )

�X�Y
= 0

Notice that the RV's X;Y are statistically dependent because the region R is not a Cartesian
product set. Yet �X;Y = 0 even though the variables are dependent.

Remark. Earlier, we learned that if X;Y are independent, then �X;Y = 0. Example 19.3 is
important because it shows us that the converse of this statement is not true: if �X;Y = 0, we
cannot conclude that the RV's X;Y are independent. It may happen that �X;Y = 0 simply due to
some underlying symmetry in the joint distribution of (X;Y ), without the RV's being independent.

Exercise. Here is another example you can work out for yourself in which the correlation
coeÆcient will be equal to zero for reasons of symmetry. Let X;Y be the discrete RV's in which
the random pair (X;Y ) is equidistributed over the set of four points

S = f(�1; 0); (1; 0); (0; 1); (0;�1)g:

Show that X;Y are dependent but that �X;Y = 0.

Example 19.4. Suppose X;Y are jointly continuously distributed with joint density

fX;Y (x; y) =

 
1

2�
p
1� �2

!
exp

 
�x

2 � 2�xy + y2

2(1 � �2)

!
; (19.4)

where � is a �xed parameter strictly between 0 and 1. The following can be shown (I do this later
as part of the joint Gaussian distribution coverage):

� For each � satisfying �1 < � < 1, (19.4) de�nes a bona�de prob density function. (That is,
the double integral is 1.)

� The two marginal distributions for X and Y are each Gaussian(0,1) (standard Gaussian).

� All three parameters rX;Y , �X;Y , and �X;Y are equal to �.

The reader should go to page 192 of Yates-Goodman and view the plots of the surface

z = fX;Y (x; y)

for various �; the reader can also do these plots via Matlab in the last experiment of Recitation 6.
You will see that the surface plots for � very close to 1 or �1 are roughly concentrated above a
straight line in the xy-plane. This bears out Property 3 of the correlation coeÆcient, which we will
be proving later on. Another interesting case is � = 0: in this case, the xy term in fX;Y (x; y) drops
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out, and then one can see by inspection of (19.4) that the joint density factors into a function of
x times a function of y. It follows that we have independence of X and Y when � = 0. (Earlier,
we saw that � = 0 does not necessarily imply independence, but for the density of form (19.4) this
will be true.) What is nice about this example is that the marginal densities of X and Y stay �xed
as you change the correlation coeÆcient �. The moral we draw from this fact is that knowing the
marginal distributions of two RV's X;Y tells us nothing about how they may be correlated|the
correlation coeÆcient could be anything between 0 and 1.

19.2.1 Center of Gravity Rule

Suppose the random pair (X;Y ) is selected uniformly from a region R in the xy-plane which has
�nite and positive area. Then it is easy to derive the following formulas:

E[X] =

RR
R xdxdy

area(R)

E[Y ] =

RR
R ydxdy

area(R)

If the reader goes to any calculus book, it will be seen that the right hand sides of these equations
are, respectively, the x and y coordinates of the center of gravity of the region R. The center of
gravity is also called the centroid. We have proven the following \center of gravity" rule:

� If (X;Y ) is uniform over the region R, then the point (E[X]; E[Y ]) is the centroid of R.

See Problems 6.1 and 6.2 of the Chapter 4-5 Solved Problems. These Problems are illustrations
of the use of the Center of Gravity Rule.
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20.1 Positively/Negatively Correlated

X;Y are positively correlated if
0 < �X;Y < 1: (20.1)

They are negatively correlated if
�1 < �X;Y < 0: (20.2)

As the value of X increases, suppose you expect that (on average) the value of Y will also increase;
then you'd guess that X;Y are positively correlated. On the other hand, as the value of X increases,
suppose you expect that (on average) the value of Y will decrease; then you'd guess that X;Y are
negatively correlated.

Example 20.1. In the \ice cream example" we considered earlier, if the number of ice cream
cones X that Bill eats increases, then we'd expect (on average) that he'd have to run more miles Y .
So, we'd guess that X and Y are positively correlated. In a later lecture, I'll use a neat technique
called the \law of iterated expectation" to actually compute �X;Y in this case and show that (20.1)
holds.

Example 20.2. Suppose (X;Y ) is chosen uniformly from the region R below.

-

6

@
@
@
@
@
@
@ x

y

3

3

R

0

40
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As X increases, the point (X;Y ) in R is forced into the lower right hand corner of R, making Y
decrease. So, we'd expect that X and Y are negatively correlated. Later, we will bear out this
intuition by actually computing �X;Y in this case and showing that (20.2) holds.

Exercise. Go to page 176 of Yates-Goodman. You will see there several other examples of X;Y
where in each case you can intuit whether the variables are positively or negatively correlated.

20.2 Correlation Properties of BSC

\BSC" stands for \binary symmetric channel" model:

X ! BSC ! Y

The so-called line diagram of the BSC is the following:

0

1

0

1

1−p

1−p

p

p

The parameter p (the \crossover probability") is the probability that the BSC makes an error; it
can be anything in the range 0 � p � 1.

Let us take the input X to be binary equiprobable (i.e., P (X = 0) = P (X = 1) = 1=2). From
the line diagram, the channel matrix is:

[p(yjx)] =
"
1� p p
p 1� p

#

We want to compute � = �X;Y as a function of the cross-over probability. Then we shall draw some
conclusions.
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We know (from the �rst step of the Bayes Method) that the joint PMF matrix [pX;Y (x; y)] is
obtained by multiplying the �rst row of the channel matrix by P (X = 0) and the second row by
P (X = 1). This gives us:

[pX;Y (x; y)] =

"
(1� p)=2 p=2
p=2 (1� p)=2

#

Only one xy product is nonzero, namely, when x = 1 and y = 1, which corresponds to the lower
right hand corner of the matrix [pX;Y (x; y)]. Therefore,

rX;Y = (1)(1)(1 � p)=2

We now compute covariance and correlation coeÆcient. The reader can easily work out that
�X = �Y = 1=2 and �X = �Y = 1=2. Therefore,

�X;Y = rX;Y � �X�Y = (1� p)=2 � 1=4

�X;Y = �X;Y =�X�Y =
(1� p)=2� 1=4

1=4
= 1� 2p

The plot of � versus p is given by:

p

rho

0
11/2

1

−1
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We will always have �1 � � � 1. Three cases of particular interest are � = 0, � = 1, � = �1.
From the equation � = 1� 2p, the reader can see that

� = 0 , p = 1=2

� = 1 , p = 0

� = �1 , p = 1

� When � = 0, the channel matrix is "
1=2 1=2
1=2 1=2

#

from which it follows that X and Y are independent. (Any time you have a channel matrix
in which the rows are all the same, then the channel input X and the channel output Y are
automatically statistically independent.) This is particularly interesting because of examples
showing that �X;Y = 0 can occur for some dependent random variables X;Y . In the case of
input and output to a BSC, this behavior can't occur | independence of input and output
is equivalent to vanishing of the correlation coeÆcient.

� When � = 1, the channel matrix is "
1 0
0 1

#

This means that the channel perfectly transmits any input, so that X = Y always holds in
this case. Notice that the values of (X;Y ) for this � = 1 case fall on the straight line x = y of
positive slope. We shall show later on that for any random variables X;Y , if �X;Y = 1, then
the values of (X;Y ) must all lie on a straight line in the (x; y)-plane of positive slope (this
will be the line x = y if the means are zero and the standard deviations are the same).

� When � = �1, then the channel matrix is"
0 1
1 0

#

and so the channel output is the exact opposite of the channel input. In other words,X+Y = 1
in this case, meaning that the values of (X;Y ) lie on the straight line x+ y = 1 of negative
slope. We shall show later on that for any random variables X;Y , if �X;Y = �1, then the
values of (X;Y ) must all lie on a straight line in the (x; y)-plane of negative slope.

20.3 Bilinearity Properties of Covariance

The bilinearity properties of covariance, which follow, allow you to linearly expand either argument
of a covariance while holding the other argument �xed.
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Property 1: Cov(X;Y + Z) = Cov(X;Y ) + Cov(X;Z)

Property 2: Cov(X;CY ) = C [Cov(X;Y )] if C is a constant.

Property 3: Cov(X;C) = 0 if C is constant.

Property 4: Cov(X;C1Y + C2Z + C3) = C1[Cov(X;Y )] + C2[Cov(X;Z)] if C1; C2; C3 are con-
stants.

Actually, Properties 1-3 are special cases of Property 4; we have stated Properties 1-3 separately for
emphasis. We have �xed the �rst argument in these properties, and linearly expanded the second
argument. You can also do the reverse (because covariance is symmetric).

The properties are easy to prove. For example, Property 1 can be proved by taking the expected
value of both sides of the identity

(X � �X)(Y + Z � �Y � �Z) = (X � �X)(Y � �Y ) + (X � �X)(Z � �Z)

The properties allow one to expand the variance of a sum:

Var[X + Y ] = Cov(X + Y;X + Y )

= Cov(X;X) + Cov(X;Y ) + Cov(Y;X) + Cov(Y; Y )

This gives us the important formula

Var[X + Y ] = �2X + 2�X;Y + �2Y

The preceding formula extends to sums of more than two terms:

Var[X1 +X2 +X3 + : : : +Xn] = (
Pn

i=1Var[Xi]) + 2
�P

i<j Cov(Xi;Xj)
�

From the preceding formulae, we see that the variance of a sum is, in general, not equal to the sum
of the variances of the separate terms. However, if the summands are uncorrelated (in particular,
if the summands are independent), the variance of a sum will be equal to the sum of the variances
of the separate terms.

Example 20.3. Let

�X;Y = �1=2
�X = 2

�Y = 3
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Then

V ar(3X � Y + 5) = V ar(3X � Y )

= Cov(3X � Y; 3X � Y )

= 9 � Cov(X;X) � 6 � Cov(X;Y ) + Cov(Y; Y )

= 9�2X � 6�X;Y + �2Y

= 9�2X � 6�X�Y �X;Y + �2Y

= 9 � 4� 6 � 2 � 3 � (�1=2) + 9 = 63

Also,

Cov(3X � Y + 4; 5X + Y � 7) = Cov(3X � Y; 5X + Y )

= 15 � Cov(X;X) � 2 � Cov(X;Y )� Cov(Y; Y )

= 15�2X � 2�X�Y �X;Y � �2Y

= 15 � 4� 2 � 2 � 3 � (�1=2) � 9 = 57

Remark. Later, we will develop an easier way to compute covariances of linear combinations
of RV's using matrices.
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21.1 Application: Correlation Receiver

Earlier, in Section 17.2, we discussed how to design the MAP detector (MAP receiver) for obtaining
an estimate of channel input X based upon channel output Y . In this section, we discuss how to
design a di�erent type of receiver called the correlation receiver.

Let RV X be the input to a channel and RV Y be the resulting output. The correlation receiver
can then be applied to Y in order to construct an estimate X̂ of X as shown in the following block
diagram:

X ! channel ! Y ! correlation
receiver

! X̂ = CY

C is a constant that is computed in order to minimize the \mean-square estimation error"

E[(X � X̂)2]:

(This minimization criterion is what distinguishes the correlation receiver from the MAP receiver:
the MAP receiver minimizes the estimation error probability P [X 6= X̂] instead of minimizing
E[(X � X̂)2]. The estimation error criterion that one uses determines the type of receiver you get
when you minimize with respect to this criterion.)

Let us �nd the minimizing choice of C in the correlation receiver output X̂ = CY . Expanding
E[(X � X̂)2],

E[(X � X̂)2] = E[(X � CY )2]

= E[X2 � 2CXY + C2Y 2]

= E[X2]� 2CE[XY ] + C2E[Y 2]

46
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The �rst derivative of the estimation error with respect to C is:

�2E[XY ] + 2CE[Y 2]:

Setting this equal to 0 and solving for C, we see that

C =
E[XY ]

E[Y 2]
=

rX;Y
E[Y 2]

: (21.1)

Because of the presence of the correlation rX;Y in formula (21.1), the reader can now see why our
receiver is called the \correlation receiver".

21.1.1 Geometric Interpretation

Let
!
x and

!
y be geometric vectors (such as you encountered in your freshman-sophomore physics

and calculus courses). Draw them in a diagram as two sides of a triangle:

-�
�
�
�
�
�
���

!
x

!
y

Any vector C
!
y , where C is a scalar, would point in the same direction as

!
y if C > 0 and would point

in the opposite direction as
!
y if C < 0. The length of the vector

!
x �C!y is denoted k !

x �C!y k;
it can be interpreted as the length of the line in our diagram which connects the end of vector

!
x

to the end of vector C
!
y :

-�
�
�
�
�
�
����
�
�
�
�
�
��-

!
x

!
yC

!
y

k
!
x �C

!
y k

It is geometrically clear that as C varies, the length k !x �C!y k becomes a minimum when the end
of vector C

!
y lies at the base of a perpendicular dropped from the end of vector

!
x :
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-�
�
�
�
�
�
���

-

!
x

!
yC

!
y

k
!
x �C

!
y k

This unique position of the vector C
!
y is called the projection of vector

!
x on vector

!
y . You learned

in physics/calculus that this projection is expressible as�!
x � !u

� !
u;

where
!
u is the unit vector in the same direction as

!
y :

!
u=

!
y

k !y k
:

Summarizing, we now have the following useful fact:

Useful Fact 1: The multiple C
!
y of vector

!
y which makes k !x �C!y k2 a minimum is

C
!
y =

 
!
x �

!
y

k !y k

! !
y

k !y k

=

 !
x � !y
k !y k2

!
y

Let us now make the following correspondences between the \world of random variables" X;Y and
the \world of geometric vectors"

!
x;

!
y :

X $ !
x

Y $ !
y

E[XY ] $ !
x � !yq

E[Y 2] $ k !y k
In other words, we want to think of the correlation E[XY ] of RV's X;Y in the same way we think
of the dot product

!
x � !y of geometric vectors

!
x;

!
y . In particular, this means that the second

moment E[Y 2], which is the correlation of Y with itself, will be thought of in the same way as

!
y � !y= k !y k2;

the square of the length of geometric vector
!
y . Using the given correspondences, we can now

re-interpret our earlier Useful Fact 1 as the following useful fact:
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Useful Fact 2: The multiple CY of random variable Y which makes E[(X �CY )2] a minimum is

CY =

�
E[XY ]

E[Y 2]

�
Y (21.2)

Equation (21.2) gives us the output of the correlation receiver, which we have interpreted as
the projection of X on Y .

Example 21.1. The channel we will be using is an \additive noise channel":

input  X

noise  Z

output  Y = X+Z

The channel input random variable X is assumed to have mean 0 and variance �2X . The channel
noise random variable Z is independent of the inputX, and is assumed to have mean 0 and variance
�2Z . Let us determine the form of the correlation receiver output

X̂ = CY:

Using formula (21.1),

C =
E[XY ]

E[Y 2]

=
E[X(X + Z)]

E[(X + Z)2]

=
E[X2] +E[X]E[Z]

E[X2] + 2E[X]E[Z] +E[Z2]

=
�2X

�2X + �2Z
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That is, the correlation receiver output may be expressed as

X̂ =

 
�2X

�2X + �2Z

!
Y:

21.2 More About �

In Section 19.2, I gave some properties of the correlation coeÆcient � without proof (Properties 1
and 3). In this section, I will prove these properties. My proofs will use the following new property
of �:

Property 4 of �: The correlation coeÆcient � remains unchanged (except possibly for a change
in sign) under scaling and translation of its two arguments. More precisely, let X;Y be two
RV's and suppose we scale and translate them to obtain two new RV's U; V as follows:

U = AX +B

V = CY +D;

where A;B;C;D are real constants with A 6= 0 and C 6= 0. Then,

�U;V =

(
�X;Y ; AC > 0

��X;Y ; AC < 0

Proof of Property 4. Use the bilinearity properties given in Section 20.3 to establish the following
facts:

Cov(AX +B;CY +D) = Cov(AX;CY ) = (AC)Cov(X;Y )

V ar(AX +B) = A2V ar(X)

V ar(CY +D) = C2V ar(Y )

It follows that

�U;V =

�
AC

jACj
�
�X;Y ;

from which Property 4 is apparent.

We now state and prove the following theorem, which establishes Property 1 of Section 19.2
and an improved version of Property 3 of Section 19.2.
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Theorem: The correlation coeÆcient always satis�es the inequality

�1 � �X;Y � 1:

Furthermore, if �X;Y = 1, then (X;Y ) can be considered as always falling on the straight line

x� �X
�X

=
y � �Y
�Y

in the xy-plane, whereas if �X;Y = �1, then (X;Y ) can be considered as always falling on the
straight line

x� �X
�X

= �y � �Y
�Y

:

Proof of Theorem. Suppose we can prove that the following identity is true:

E

"��
X � �X
�X

�
� �

�
Y � �Y
�Y

��2#
= 1� �2;

where � = �X;Y . Then, the Theorem is obviously true. To prove this identity, we make the change
of variable

U =
X � �X
�X

V =
Y � �Y
�Y

By Property 4, �U;V = �X;Y = �, and our identity reduces to the following much more simple form:

E[(U � �V )2] = 1� �2:

It is almost a trivial matter to prove this fact (using the fact that U; V each have mean 0 and
variance 1):

E[(U � �V )2] = E[U2]� 2�E[UV ] + �2E[V 2]

= 1� 2�2 + �2 = 1� �2

21.2.1 Geometric Interpretation of �

In Section 21.1.1, we introduced geometric notions which helped us to visualize what the correlation
receiver is doing. In this section, we will use similar notions to give a geometric interpretation of
the correlation coeÆcient �.

Given RV's X;Y , let us think of X � �X and Y � �Y as if they are geometric vectors in the
following diagram:
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-�
�
�
�
�
�
���

X � �X

Y � �Y

�

The dot product of two geometric vectors is the product of the lengths of the vectors times the
cosine of the angle between them:

(X � �X) � (Y � �Y ) = kX � �XkkY � �Y k cos �: (21.3)

As we pointed out in Section 21.1.1, we want to think of dot product as expected value of the
product of the RV's, and we want to think of length as the square root of the second moment of
the RV. Under these correspondences, we interpret equation (21.3) as:

E[(X � �X)(Y � �Y )] =
q
E[(X � �X)2]

q
E[(Y � �Y )2] cos �;

which is the same thing as saying that

�X;Y = �X�Y cos �:

By de�nition of �X;Y , this tells us that

�X;Y = cos �: (21.4)

That is, we can interpret the correlation coeÆcient �X;Y as the cosine of the angle between X��X
and Y � �Y . Since cos � will always be between �1 and 1, this interpretation of �X;Y helps us to
appreciate why the inequality

�1 � �X;Y � 1

should be true.
There are applications in which the interpretation (21.4) of �X;Y can be useful. One of these

applications (to be discussed more in a later lecture) is decorrelation. In decorrelation, you take
linear combinations of X and Y in order to obtain RV's U; V which are uncorrelated in the sense
that �U;V = 0. Geometrically, this means we seek those linear combinations that will make the
angle between U � �U and V � �V equal to 90 degrees. In other words, before decorrelation, the
angle between X � �X and Y � �Y was not 90 degrees; decorrelation changes this angle to 90
degrees.
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21.3 Conditioning X or Y on an (X; Y ) event

Let X;Y be RV's. Let B be a subset of the xy-plane such that

P ((X;Y ) 2 B) > 0:

Then it is no problem to conditionX (or Y ) on event B, because B is an event of positive probability.
For example, suppose we want to compute the conditional probability

P (a � X � bjB);

which is an abbreviation for
P (fa � X � bgjf(X;Y ) 2 Bg);

the conditional probability of event fa � X � bg given event f(X;Y ) 2 Bg. Chapter 1 tells us
that we may compute this probability as the following ratio:

P (a � X � bjB) = P (fa � X � bg \ f(X;Y ) 2 Bg)
P ((X;Y ) 2 B) :

Both the probability in the numerator and the probability in the denominator can easily be com-
puted if we know how X;Y are jointly distributed, which gives us the following formulas:

� If X;Y are each discrete, then

P (a � X � bjB) =

X
f(x;y):a�x�b; (x;y)2Bg

PX;Y (x; y)

X
(x;y)2B

PX;Y (x; y)
: (21.5)

� If X;Y are jointly continuous, then

P ((a � X � bjB) =

ZZ
f(x;y):a�x�b; (x;y)2Bg

fX;Y (x; y)dxdyZZ
B
fX;Y (x; y)dxdy

: (21.6)

It is equally easy to compute
E(XjB);

the conditional expected value of X given that (X;Y ) falls in B. This is done as follows:



LECTURE 21. CHAPTERS 4-5 PART 7 54

� If X;Y are each discrete, then

E(XjB) =

X
(x;y)2B

xPX;Y (x; y)

X
(x;y)2B

PX;Y (x; y)
: (21.7)

� If X;Y are jointly continuous, then

E(XjB) =

ZZ
B
xfX;Y (x; y)dxdyZZ

B
fX;Y (x; y)dxdy

: (21.8)

The reader can also easily see how to compute expressions like

P (a � Y � bjB);

and
E(Y jB):

You simply reverse the roles of X and Y in the four formulas (21.5)-(21.8).

Example 21.2. Let X;Y be independent RV's, each exponentially distributed with E(X) = 1
and E(Y ) = 2. Then:

P (X � 1jX + Y � 2) =

Z 1

0

Z 2�x

0
(0:5) exp(�x� y=2)dydxZ 2

0

Z 2�x

0
(0:5) exp(�x� y=2)dydx

= 0:8575

E(XjX + Y � 2) =

Z 2

0

Z 2�x

0
(0:5)x exp(�x� y=2)dydxZ 2

0

Z 2�x

0
(0:5) exp(�x� y=2)dydx

= 0:5134

P (Y � 1jX + Y � 2) =

Z 1

0

Z 2�y

0
(0:5) exp(�x� y=2)dxdyZ 2

0

Z 2�y

0
(0:5) exp(�x� y=2)dxdy

= 0:7650

E(Y jX + Y � 2) =

Z 2

0

Z 2�y

0
(0:5)y exp(�x� y=2)dxdyZ 2

0

Z 2�y

0
(0:5) exp(�x� y=2)dxdy

= 0:6452
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Remark. Notice that in all four formulas (21.5)-(21.8), the denominator on the right hand
side is simply P ((X;Y ) 2 B). The fact that this probability is positive makes these calculations
straightforward. If this probability is equal to zero, then another approach would have to be found
(because then all four formulas (21.5)-(21.8) would yield an indeterminate form 0=0). For example,
if Y is continuous, the event fY = yg is an event of probability zero for any �xed real number y,
yet we will need to make sense of expressions like

P (a � X � bjY = y)

and
E(XjY = y):

This will be done during our next lecture.

21.4 Conditioning one RV on another: Discrete Case

Let X;Y be discrete RV's. In this section, we explain how you �nd the conditional PMF of X
given any value of Y and how you �nd the conditional PMF of Y given any value of X.

The expression PXjY (xjy) denotes the conditional PMF of X given Y = y. In the expression
PXjY (xjy), it is to be understood that y is �xed and x varies through the values of X. This
conditional PMF is de�ned by:

PXjY (xjy) �
= P (X = xjY = y) =

P (X = x; Y = y)

P (Y = y)
=
PX;Y (x; y)

P Y (y)
:

Keep in mind that even though we are calling PXjY (xjy) a conditional PMF, it is a bona�de PMF
in its own right, that is, X

x

PXjY (xjy) = 1:

We can reverse the roles of X and Y in all of the preceding. Thus, the expression P Y jX(yjx)
denotes the conditional PMF of Y given X = x. In the expression P Y jX(yjx), it is to be understood
that x is �xed and y varies through the values of Y . This conditional PMF is de�ned by:

P Y jX(yjx) �
= P (Y = yjX = x) =

P (X = x; Y = y)

P (X = x)
=
PX;Y (x; y)

PX(x)
:

Keep in mind that even though we are calling P Y jX(yjx) a conditional PMF, it is a bona�de PMF
in its own right, that is, X

y

P Y jX(yjx) = 1:

One particularly attractive subcase is when the discrete RV's X and Y take just �nitely many
values. Then we know that we can put the joint PMF values PX;Y (x; y) in an array, and from this
array we can obtain any possible conditional PMF as follows:
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� For a �xed value y of Y , you �nd the conditional PMF of X given Y = y by �nding the
column of the joint PMF array with the heading \Y = y", and then dividing through this
column by the column sum.

� For a �xed value x of X, you �nd the conditional PMF of Y given X = x by �nding the row
of the joint PMF array with the heading \X = x", and then dividing through this row by
the row sum.

Example 21.3. (This is Problem 7.1 of the Chapter 4-5 Solved Problems.) Let discrete X;Y
have the following joint PMF array:

0
BBB@

Y = 1 Y = 2 Y = 3 Y = 4

X = 1 :10 :05 :05 :05
X = 2 :05 :10 :05 :05
X = 3 :05 :05 :10 :05
X = 4 :05 :05 :05 :10

1
CCCA

(a) Compute P (2 � X � 3jY = 2) and E(XjY = 2).

Solution. Divide the Y = 2 column of the joint PMF array by the column sum 0:25. The
conditional PMF of X given Y = 2 is then

PXjY (xj2) =

8>>><
>>>:

1=5; x = 1
2=5; x = 2
1=5; x = 3
1=5; x = 4

Therefore:
P (2 � X � 3jY = 2) = PXjY (2j2) + PXjY (3j2) = 3=5

E(XjY = 2) = PXjY (1j2) � 1 + PXjY (2j2) � 2 + PXjY (3j2) � 3 + PXjY (4j2) � 4
= (1=5) � 1 + (2=5) � 2 + (1=5) � 3 + (1=5) � 4 = 12=5

(b) Compute P (Y � 2jX = 4) and E(Y jX = 4).

Solution. Divide the X = 4 row of the joint PMF array by the row sum 0:25. The conditional
PMF of Y given X = 4 is then

P Y jX(yj4) =

8>>><
>>>:

1=5; y = 1
1=5; y = 2
1=5; y = 3
2=5; y = 4
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P (Y � 2jX = 4) = P Y jX(1j4) + P Y jX(2j4) = 2=5:

E(Y jX = 4) = P Y jX(1j4) � 1 + P Y jX(2j4) � 2 + P Y jX(3j4) � 3 + P Y jX(4j4) � 4
= (1=5) � 1 + (1=5) � 2 + (1=5) � 3 + (2=5) � 4 = 14=5



Lecture 22

Chapters 4-5 Part 8

22.1 Conditioning one RV on another: Continuous Case

Let X;Y be jointly continuous RV's. For each value of Y , there is a conditional density (conditional
PDF) for X given that value of Y . Similarly, for each value of X, there is a conditional density
(conditional PDF) for Y given that value ofX. In this lecture, I explain how to �nd these conditional
densities and how to do conditional probability and conditional expected value computations using
these conditional densities. I will also cover the law of iterated expectation.

22.1.1 Conditional Density fXjY (xjy)

Let y be any value of RV Y . The conditional density of X given Y = y is denoted fXjY (xjy) and
is de�ned by

fXjY (xjy) �
=
fX;Y (x; y)

fY (y)
: (22.1)

In the expression fXjY (xjy), we are regarding y as being �xed and we are regarding x as a variable
which ranges through the values of RV X. Even though we are calling fXjY (xjy) a conditional

density, it is a bona�de density function in its own right, that is,Z 1

�1
fXjY (xjy)dx = 1:

The conditional density fXjY (xjy) is used to compute conditional probabilities and conditional
expected values in the following way:

P (a � X � bjY = y) =

Z b

a
fXjY (xjy)dx

E(XjY = y) =

Z 1

�1
xfXjY (xjy)dx

58
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It should be mentioned that you can also do the previous calculations directly, without �nding
the conditional PDF fXjY (xjy):

P (a � X � bjY = y) =

Z b

a
fX;Y (x; y)dxZ 1

�1
fX;Y (x; y)dx

E(XjY = y) =

Z 1

�1
xfX;Y (x; y)dxZ 1

�1
fX;Y (x; y)dx

Remark. In a later lecture, I will prove why formula (22.1) is correct. (The proof uses
L'Hospital's Rule from calculus.)

22.1.2 Conditional Density fY jX(yjx)

Let x be any value of RV X. The conditional density of Y given X = x is denoted fY jX(yjx) and
is de�ned by

fY jX(yjx) �
=
fX;Y (x; y)

fX(x)
:

In the expression fY jX(yjx), we are regarding x as being �xed and we are regarding y as a variable
which ranges through the values of RV Y . Even though we are calling fY jX(yjx) a conditional

density, it is a bona�de density function in its own right, that is,Z 1

�1
fY jX(yjx)dy = 1:

The conditional density fY jX(yjx) is used to compute conditional probabilities and conditional
expected values in the following way:

P (a � Y � bjX = x) =

Z b

a
fY jX(yjx)dy

E(Y jX = x) =

Z 1

�1
yfY jX(yjx)dy

It should be mentioned that you can also do the previous calculations directly, without �nding
the conditional PDF fY jX(yjx):

P (a � Y � bjX = x) =

Z b

a
fX;Y (x; y)dyZ 1

�1
fX;Y (x; y)dy

(22.2)



LECTURE 22. CHAPTERS 4-5 PART 8 60

E(XjY = y) =

Z 1

�1
yfX;Y (x; y)dyZ 1

�1
fX;Y (x; y)dy

(22.3)

22.1.3 Worked Examples

Example 22.1. Let (X;Y ) have joint density

fX;Y (x; y) = C exp
�
�0:25[x2 � 2xy + 2y2]

�
;

where C is the unique positive real constant that makes this a joint density. (This is a special case
of the joint Gaussian density.) Let us �rst �nd the conditional PDF of X given Y = 1, namely, we
want to �nd fXjY (xj1). Instead of �nding fXjY (xj1) by plugging into formula (22.1), I show you
here another approach that is sometimes easier. We can think of our conditional density as having
the form

fXjY (xj1) = C 0fX;Y (x; 1); �1 < x <1;

where the constant C 0 is chosen so that fXjY (xj1) integrates to 1. Note that

x2 � 2xy + 2y2 = (x� y)2 + y2;

so that we may manipulate fXjY (xj1) into the form

fXjY (xj1) = C 00 exp

 
�(x� 1)2

4

!
:

This is clearly the form of a Gaussian density function. We immediately conclude that the condi-
tional distribution of X given Y = 1 is the Gaussian distribution with mean 1 and variance 2. This
gives us the complete description of this conditional density as

fXjY (xj1) =
�

1p
2�
p
2

�
exp

 
�(x� 1)2

4

!
:

It is also immediate that

E(XjY = 1) = 1

V ar(XjY = 1) = 2

Exercise. In the preceding example, use the same technique to determine the precise expression
for fY jX(yj1) without doing any integration. Also, give the values of E(Y jX = 1) and V ar(Y jX =
1) without doing any computation.
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Moral. If (X;Y ) is joint Gaussian, then any of its conditional PDF's are one-dimensional
Gaussian densities. (This is valid because the technique of Example 22.1 will apply to any joint
Gaussian PDF.)

Example 22.2. Let R be the in�nite triangular region below.

x

y

0

y=x

R

Let f(x; y) be the joint PDF of random variables X;Y as follows:

f(x; y) =

(
Ce�(x+y); (x; y) 2 R

0; elsewhere

(The value of the positive constant C is not needed in this problem.) Let us �nd the conditional
PDF of Y given X = 2; that is, we are going to �nd fY jX(yj2). Locate the point x = 2 on the
x-axis in the above plot, and then move up from there along a vertical slice through region R that
goes from y = 0 to y = 2. Given X = 2, this tells us that Y can only vary from 0 to 2. Plugging
x = 2 into the joint density, we see that the conditional PDF fY jX(yj2) takes the form

fY jX(yj2) = C 0 exp(�y); 0 � y � 2 (zero elsewhere):

Let us now go one step further and compute E(Y jX = 2). First, we need to evaluate the constant
C 0:

C 0 =
1Z 2

0
exp(�y)dy

= 1:1565:
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We then have:

E(Y jX = 2) =

Z 2

0
yfY jX(yj2)dy =

Z 2

0
(1:1565)y exp(�y)dy = 0:6870:

Exercise. In the preceding example, prove that

E(Y jX = x) =
1� xe�x � e�x

1� e�x
; x � 0:

If you get stuck, go to Problem 7.3 of the Chapter 4-5 Solved Problems.

Example 22.3. Let R be the region below.

x

y

1

1

R

0

Let random variables X;Y have the joint density

f(x; y) =

(
x+ y; (x; y) 2 R

0; elsewhere

As a change of pace, let us compute P (0 � Y � 1=4jX = 1=2) and E(Y jX = 1=2) without �nding
fY jX(yj1=2). Using formulas (22.2)-(22.3), we have:

P (0 � Y � 1=4jX = 1=2) =

Z 1=4

0
(0:5 + y)dyZ 1

0
(0:5 + y)dy

= 0:1562
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E(Y jX = 1=2) =

Z 1

0
y(0:5 + y)dyZ 1

0
(0:5 + y)dy

= 0:5833

Exercise. In the preceding example, prove that

E(XjY = y) =
1=3 + y=2

y + 1=2
; 0 � y � 1:

If you get stuck, consult Problem 7.2 of the Chapter 4-5 Solved Problems.

Exammple 22.4. Let the random point (X;Y ) be chosen uniformly from the semicircular region
R as follows:

y

x

x   +  y   =  12 2

R

Notice that X varies from �1 to 1. Let us �x X = x for an arbitrary x satisfying �1 � x � 1. We
will now �nd the conditional distribution of Y given X = x. To see what this would be, locate the
point x on the x-axis in the above �gure and then go up along a vertical slice through R. This slice
goes in the y direction from y = 0 to y =

p
1� x2. Along this slice, the joint density is constant.

Therefore, we come to the important conclusion that given X = x, Y is conditionally uniformly
distributed from y = 0 to y =

p
1� x2. We can immediately conclude from this that

E(Y jX = x) = (1=2)
p
1� x2; �1 � x � 1;

since the mean of a uniform distribution is the midpoint of the interval over which the distribution
extends. Similarly, for each �xed y satisfying 0 � y � 1, we'd be able to argue that the conditional
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distribution of X given Y = y is a uniform distribution extending from x = �p1� y2 to x =p
1� y2. We'd be able to easily conclude from this that

E(XjY = y) = 0

V ar(XjY = y) =
1� y2

3

Moral. We conclude from Example 22.4 that if (X;Y ) is jointly uniformly distributed in region
R, then every single conditional PDF is a one-dimensional uniform density. The interval over which
each of these conditional uniform distributions extends is determined by where the appropriate slice
(horizontal or vertical) through R begins and ends.

Exercise. Let R be the triangular region:

x

y

0 1 2

1

y=x y=2-x

R

Using the above \Moral," draw the following conclusion by inspection:

E[Y jX = x] =

(
x=2; 0 � x � 1

(2� x)=2; 1 < x � 2

You should also be able to draw the conclusion that

E[XjY = y] = 1; 0 � y � 1:
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22.2 Law of Iterated Expectation

Suppose X;Y are two RV's. The notation E(Y jX) will denote the random variable which takes
the value E(Y jX = x) when X takes the value x. Thus, the random variable E(Y jX) is a function
of the random variable X.

The law of iterated expectation is the following formula:

E[E(Y jX)] = E(Y ):

In other words, to calculate E(Y ), you can �rst calculate E(Y jX) (the �rst expected value) and
then you can compute the expected value of the random variable E(Y jX) (the second expected
value). Because two expected value operations are involved, you see how this law got its name.

The law of iterated expectation is particularly suited to two step experiments in which X is
observed as the result of the �rst step, and then Y is observed conditioned on the X value as the
second step of the experiment.

Here is the easy proof of the law of iterated expectation. First, you can write

E[E(Y jX)] =

Z 1

�1
E[Y jX = x]fX(x)dx: (22.4)

You can then substitute

E[Y jX = x] =

Z 1

�1
yfY jX(yjx)dy:

The right side of (22.4) then becomes

Z 1

�1

Z 1

�1
yfX(x)fY jX(yjx)dydx: (22.5)

Then, using the fact that
fX;Y (x; y) = fX(x)fY jX(yjx);

it is a simple matter to show that the right side of (22.5) is equal to E(Y ).
Here is a generalization of the law of iterated expectation that is easy to prove based upon the

method just used:
E[�(X) (Y )] = E[�(X)E[ (Y )jX]]: (22.6)

In equation (22.6), �(X) can be any function of RV X and  (Y ) can be any function of RV Y .
For example, if you take �(X) = X and  (Y ) = Y , you obtain the following useful formula for
computing correlation:

E[XE(Y jX)] = E[XY ]:

Example 22.5. Let's go back to our ice cream example. Bill eats X ice cream cones, where X
is Poisson with mean 1. Given that X = x, Bill runs Y miles, where Y is the number of heads in
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tossing a fair coin x+1 times. Notice that E[Y jX = x] is the mean of a Binomial(n; p) distribution
with n = x+ 1 and p = 1=2. By Appendix A, this is

E[Y jX = x] = np = (x+ 1)=2:

We conclude that
E(Y jX) = (X + 1)=2:

Therefore,
E(Y ) = E[E(Y jX)] = E[(X + 1)=2] = (E[X] + 1)=2 = 1:

The law of iterated expectation has allowed us to see that the expected number of ice cream cones
that Bill eats is 1. If we tried to compute E(Y ) directly from the PMF of Y , we would have a
diÆcult time because it is not easy to �nd the PMF of Y . (We tried to �nd some PMF values for
Y during one of our earlier recitations.) Let us go further and compute the correlation E(XY ).
We obtain

E(XY ) = E[XE(Y jX)] = E[X(X + 1)=2] = (1=2)(E[X2 ] +E[X]) = 1:5:

(In this last calculation, I used the fact that the mean and variance of X are both 1.) We can also
compute the second moment of Y :

E[Y 2] = E[E(Y 2jX)] = E[V ar(Y jX) +E(Y jX)2]:

From Appendix A,
V ar(Y jX = x) = np(1� p) = (x+ 1)=4;

and so
V ar(Y jX) = (X + 1)=4:

This gives us
E[Y 2] = E[(X + 1)=4 + (X + 1)2=4] = 7=4:

The variance of Y is therefore
V ar(Y ) = 7=4 � 12 = 3=4:

Remark. The reader will �nd several more worked examples on law of iterated expectation in
Section 8 of the Chapter 4-5 Solved Problems.
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Chapters 4-5 Part 9

23.1 Odds and Ends

Here I take the time to discuss some theoretical issues that were deferred from earlier lectures.

23.1.1 Justi�cation of Conditional PDF Formula

I show you why the formula

fXjY (xjy) =
fX;Y (x; y)

fY (y)

is valid for a pair of jointly continuous RV's (X;Y ). This means I need to show you why the formula

P [X 2 AjY = y] =

Z
A

�
fX;Y (x; y)

fY (y)

�
dx; (23.1)

is true for every event fX 2 Ag. The left hand side cannot be evaluated directly because the event
fY = yg has probability zero. Instead, I will evaluate it as

P [X 2 AjY = y] = lim
�y!0

P [X 2 Ajy � Y � y +�y]: (23.2)

By Chapter 1,

P [X 2 Ajy � Y � y +�y] =
P [X 2 A; y � Y � y +�y]

P [y � Y � y +�y]
:

The numerator is

P [X 2 A; y � Y � y +�y] =

Z y+�y

y

Z
A
fX;Y (x; y)dxdy; (23.3)

67
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and the denominator is

P [y � Y � y +�y] =

Z y+�y

y
fY (y)dy: (23.4)

Notice that both the numerator and the denominator approach 0 as �y ! 0. Therefore, the
limit in (23.2) is an indeterminate of the form 0=0. In this case, calculus tells us that we can use
L'Hospital's Rule to compute the limit. We must divide the derivative of the numerator (with
respect to �y) by the derivative of the denominator, and then let �y ! 0 to obtain the limit in
(23.2). By the fundamental theorem of calculus, the derivative of the numerator (23.3) isZ

A
fX;Y (x; y +�y)dx;

and the derivative of the denominator (23.4) is

fY (y +�y):

The limit of the quotient of the derivatives is thereforeR
A fX;Y (x; y)dx

fY (y)
;

which gives us formula (23.1), completing our proof.

23.1.2 Factoring Joint PDF/PMF; Independence

Suppose we have a two-step experiment in which we observe the value of RV X on the �rst step,
and then we observe the value of RV Y given the value of X on the second step. In such a scenario,
we would probably not be given the joint distribution of (X;Y ) \up front". Instead, we would
be given the distribution of X followed by the conditional distribution of Y given each possible
observed value of X; we could then combine these two distributions by multiplication to obtain
the joint distribution; this gives a factorization of the joint distribution into two parts. If X;Y are
discrete, this factorization takes the form:

PX;Y (x; y) = PX(x)P Y jX(yjx): (23.5)

If X;Y are jointly continuous, this factorization takes the form:

fX;Y (x; y) = fX(x)fY jX(yjx): (23.6)

It is instructive to see what these formulas tell us when X;Y are independent. If X;Y are inde-
pendent, then in the case of discrete X;Y , we obtain the factorization of the joint PMF into the
product of the marginal PMF's:

PX;Y (x; y) = PX(x)P Y (y): (23.7)
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Comparing (23.7) to (23.5), we see that

P Y jX(yjx) = P Y (y)

if and only if the discrete RV's X;Y are independent. Or, we can reverse the roles of X and Y and
conclude that

PXjY (xjy) = PX(x)

if and only if the discrete RV's X;Y are independent. If (X;Y ) are jointly continuous, one can
make similar conclusions: From the factorization

fX;Y (x; y) = fX(x)fY (y)

and equation (23.6), one concludes that

fY jX(yjx) = fY (y)

if and only if X;Y are independent, or, equivalently,

fXjY (xjy) = fX(x)

if and only if X;Y are independent. We can summarize these conclusions as follows:

Conclusion: X;Y are independent if and only if every conditional distribution is equal to the
marginal (unconditional) distribution that you obtain by dropping the condition.

Example 23.1. Previously, we discussed how to �nd out whetherX;Y are dependent or indepen-
dent without using conditional distributions. Now, using the above Conclusion, we can sometimes
decide very quickly that two RV's are dependent or independent by appealing to conditional dis-
tributions. Suppose, for example, that (X;Y ) is jointly continuously distributed over the entire
semicircular region

R = f(x; y) : x2 + y2 � 1; x � 0g:
X ranges from 0 to 1. Clearly, when X = 0, the conditional distribution of Y will range from �1 to
1. However, when X = 1, then Y will always be 0. I have picked out two conditional distributions
that are di�erent. That is enough to conclude that X;Y must be dependent RV's. (Actually, more
than just two conditional distributions are di�erent: as x varies from 0 to 1, all of the conditional
PDF's fY jX(yjx) are di�erent, because the corresponding vertical slices through R have di�erent
starting and ending y values. Thus, no two of the conditional distributions of Y given X are the
same!)
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23.2 Distribution of Sum of Independent RV's

Let X1;X2; � � � ;Xn be independent RV's. (Although I have not yet de�ned independence of RV's
for more than two RV's, what I mean by independence is that

P [X1 2 A1;X2 2 A2; � � � ;Xn 2 An] =
nY
i=1

P [Xi 2 Ai]

for all choices of events fXi 2 Aig.) Let

X = X1 +X2 + � � �+Xn

be the sum of all these independent RV's. I will prove later that the PDF of X is obtained by
convolution of the separate PDF's of the Xi's:

fX = fX1
� fX2

� � � � � fXn : (23.8)

Recall that the Laplace transform of a convolution is the product of the separate Laplace transforms.
Therefore, we can say from equation (23.8) that

L[fX ] =
nY
i=1

L[fXi ]; (23.9)

where L denotes the Laplace transform operator. If you replace Laplace variable s by �s, then you
obtain the moment generating function. Therefore, we can also say that

MX(s) =
nY
i=1

MXi(s): (23.10)

Example 23.2. Let X be the number of heads on the toss of 3 fair coins. From earlier in the
course, we already know that X is Binomial(n; p) with n = 3 and p = 1=2. Here, we show another
way to obtain this result using convolution. We can write

X = X1 +X2 +X3;

where Xi is equal to 1 if the i-th coin comes up heads and is equal to 0 otherwise. Each Xi has
PDF

(1=2)Æ(x) + (1=2)Æ(x � 1):

The Laplace transform is
0:5 + 0:5e�s:
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By (23.9), we see that the PDF of X is the inverse Laplace transform of

(0:5 + 0:5e�s)3 = (1=8) + (3=8)e�s + (3=8)e�2s + (1=8)e�3s:

Inverting, we have

fX(x) = (1=2)Æ(x) + (3=8)Æ(x � 1) + (3=8)Æ(x � 2) + (1=8)Æ(x � 3):

Example 23.3. Let X1;X2 be independent Uniform(0; 1) RV's. Let

X = X1 +X2:

The PDF's of X1 and X2 are the same, namely, a rectangular pulse from x = 0 to x = 1 of
amplitude 1. If we convolute this rectangular pulse with itself, we obtain a symmetric triangular
pulse that starts at x = 0 + 0 = 0 and ends at x = 1 + 1 = 2. This triangular pulse is the density
of X, and since it must have area one under it, the plot of fX(x) must be as follows:

x

y

0 1 2

1

y=x y=2-x

Exercise. Re-work Example 23.3 where you again assume that X1 is Uniform(0; 1), but instead
you assume that X2 is Uniform(0; 2). Determine fX(x). (Hint: fX(x) is a symmetric trapezoidal
pulse starting at x = 0 and ending at x = 1 + 2 = 3.)

Example 23.4. Let X = X1 +X2 +X3, where the Xi's are independent and each Xi has the
exponential distribution with mean 1, that is

fXi(x) = exp(�x)u(x):
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The Laplace transform of the preceding is 1=(s+ 1), and therefore

fX(x) = L�1
�

1

(s+ 1)3

�
= (x2=2) exp(�x)u(x):

Exercise. Re-work Example 23.4, where you again assume that X1 is exponential with mean 1,
but instead you assume that X2 is exponential with mean 2 and X3 is exponential with mean 3.
Hint: fX(x) is the inverse transform of

�
1

s+ 1

��
1=2

s+ 1=2

��
1=3

s+ 1=3

�
:

Example 23.5. Let X1;X2; � � � ;Xn be independent Gaussian RV's. Let us prove that

X = X1 +X2 + � � �+Xn

is also a Gaussian RV. Letting �i be the mean of Xi and letting �2i be the variance of Xi, we see
from Chapter 6 of your textbook that the moment generating function of Xi is

MXi(s) = exp(�is+ 0:5�2i s
2):

Using equation (23.10), we see that

MX(s) =
nY
i=1

exp(�is+ 0:5�2i s
2) = exp

 
(
nX
i=1

�i)s+ 0:5(
nX
i=1

�2i )s
2

!
:

From the preceding equation, we see that MX(s) has the form of a Gaussian MGF. We conclude
that X must be Gaussian with mean

�1 + �2 + � � �+ �n

and variance
�21 + �22 + � � �+ �2n:

Remark. You can �nd more worked examples of this type in Section 6.4 of your textbook and
in Section 9 of the Chapter 4-5 Solved Problems.
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Chapters 4-5 Part 10

24.1 Distribution of Max/Min of Independent RV's

Let X1;X2; � � � ;Xn be independent RV's.

Distribution of Max: Let
X = max(X1;X2; � � � ;Xn):

Then the PDF fX(x) of X is given by the following formula:

fX(x) =
d

dx

(
nY
i=1

FXi(x)

)
: (24.1)

Distribution of Min: Let
X = min(X1;X2; � � � ;Xn):

Then the PDF fX(x) of X is given by the following formula:

fX(x) = � d

dx

(
nY
i=1

(1� FXi(x))

)
: (24.2)

Proof of (24.1). Let X be the maximum of the Xi's. Note that

fX � xg = \ni=1fXi � xg: (24.3)

(If the biggest of a bunch of numbers is � x then every single number is � x and vice-versa.) The
events on the right side of (24.3) are independent. The product of an intersection of independent
events is the product of the probabilities of the separate events. Therefore,

P [X � x] =
nY
i=1

P [Xi � x]:

73
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The probabilities on each side of the preceding equation are all CDF's and so

FX(x) =
nY
i=1

FXi(x):

Di�erentiating both sides with respect to x, you get (24.1).

Proof of (24.2). Let X be the minimum of the Xi's. Note that

fX > xg = \ni=1fXi > xg: (24.4)

(If the smallest of a bunch of numbers is > x then every single number is > x and vice-versa.) The
events on the right side of (24.4) are independent. The product of an intersection of independent
events is the product of the probabilities of the separate events. Therefore,

P [X > x] =
nY
i=1

P [Xi > x]:

The probabilities on each side of the preceding equation are all 1� CDF's and so

1� FX(x) =
nY
i=1

(1� FXi(x)):

Di�erentiating both sides with respect to x, and then multiplying by �1, you get (24.2).

Example 24.1. Consider the system

A! 1 ! 2 ! 3 ! B;

with subsystems 1, 2, 3 connected in series. The object of this system is for something to 
ow
from point A to point B. For i = 1; 2; 3, let the random lifetime Ti of subsystem i be exponentially
distributed. Let us �nd the PDF of TAB , the lifetime of the connection from A to B. We have

TAB = min(T1; T2; T3):

Plug into equation (24.2) to get the PDF fTAB(t):

fTAB(t) = � d

dt

(
3Y
i=1

(1� FTi(t))

)
:

It is easy to compute that
1� FTi(t) = exp(�ait); t � 0
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where ai is the reciprocal of the expected lifetime of Ti. Therefore,

fTAB(t) = � d

dt
exp(�(a1 + a2 + a3)t);

which simpli�es to
fTAB (t) = (a1 + a2 + a3) exp(�(a1 + a2 + a3)t)u(t):

That is, TAB is exponentially distributed with parameter a1+a2+a3. We obtain the following nice
formula expressing the expected lifetime of the overall system in terms of the expected lifetimes of
its subsystems:

E[TAB ] =

�
1

E[T1]
+

1

E[T2]
+

1

E[T3]

��1
:

What do you think this formula would become for a system consisting of n subsystems connected
in series, where n can be any positive integer � 2?

Example 24.2. Consider the following system with subsystems 1, 2, 3 connected in parallel:

BA

3

2

1

The object of this system is for something to 
ow from point A to point B. For i = 1; 2; 3, let the
random lifetime Ti of subsystem i be exponentially distributed. Let us �nd the PDF of TAB , the
lifetime of the connection from A to B. We have

TAB = max(T1; T2; T3):

Plug into equation (24.1) to get the PDF fTAB(t):

fTAB(t) =
d

dt

3Y
i=1

(1� exp(�ait)):

Use the product rule of di�erentiation to �nish. You obtain

fTAB (t) = [a1 exp(�a1t)(1� exp(�a2t))(1� exp(�a3t)) +
a2 exp(�a2t)(1� exp(�a1t))(1 � exp(�a3t)) +
a3 exp(�a3t)(1� exp(�a1t))(1 � exp(�a2t))] u(t)
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24.2 Application to Mean-Square Receiver Design

As we get toward the end of our Chapter 4-5 material, we will now and again consider various
applications. In the present section, we consider the application to mean-square receiver design.
The following block diagram gives us the scenario we are operating under in this application:

X ! channel ! Y ! MS
receiver

! X̂ = �(Y )

The channel, random input X to channel, and random output Y from channel are �xed. Our job
is to design a receiver which converts the channel output into an estimate X̂ of X, which can in
general be any function �(Y ) of Y . The receiver is referred to as \mean-square receiver" (MS
receiver for short) because in order to see how good a job the receiver is doing, we measure the
so-called mean-square estimation error, de�ned by the formula

mean-square estimation error
�
= E[(X � X̂)2]

The closer the mean-square estimation error is to zero, the better the job that the mean-square
receiver is doing. Here are �ve common types of MS receivers:

Default Receiver: The default receiver simply declares that the estimate is

X̂ = 0:

When you use a default receiver, you are ignoring the value of Y coming into the receiver and
you are ignoring any information about the probability distribution of X. The mean-square
estimation error of the default receiver is

E[(X � X̂)2] = E[(X � 0)2] = E[X2];

the second moment of the channel input RV X.

Blind Receiver: The blind receiver declares that the estimate is

X̂ = �X :

\Blind" refers to the fact that you are ignoring the value of Y coming into the receiver.
However, the blind receiver does use information about the probability distribution of X,
namely, the mean of X. The mean-square estimation error of the blind receiver is

E[(X � X̂)2] = E[(X � �X)
2] = �2X ;

the variance of X. We know from the Chapter 2-3 material that V ar(X) � E[X2]. Therefore,
the blind receiver is doing a better job of estimating X than the default receiver.
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Correlation Receiver: The correlation receiver was covered in Section 21.1. It is de�ned by

X̂
�
=

�
E[XY ]

E[Y 2]

�
Y: (24.5)

As discussed in Section 21.1, we can think of the correlation receiver geometrically as the
projection of X on Y . We can also think of the correlation receiver as the unique constant
multiple of Y which is closest to X in the mean-square sense (that is, of all X̂ 's which are
constant multiples of Y , E[(X�X̂)2] is minimized for the correlation receiver output X̂ given
by (24.5)).

Straight Line Receiver: The purpose of the straight line receiver is to produce an estimate of
X of the form

X̂ = AX +B; (24.6)

whereA;B are constants chosen to give the smallest mean-square estimation errorE[(X�X̂)2]
among all estimates of \straight-line" form (24.6). The straight line receiver operates in two
steps. In the �rst step, you project X � �X on Y � �Y . What this does is give you the best
mean-square estimate of X � �X which is a constant multiple of Y � �Y . The result of this
�rst step is precisely what you get from the right side of formula (24.5) when you substitute
X � �X for X and Y � �Y for Y , namely�

E[(X � �X)(Y � �Y )]

E[(Y � �Y )2]

�
(Y � �Y ) =

�X;Y
�2Y

(Y � �Y ) = �(�X=�Y )(Y � �Y )

is what you get from Step 1, where � is the correlation coeÆcient �X;Y . Notice that the result
of our �rst step, since it can be regarded as an estimate of X��X , can be adjusted to obtain
an estimate of X if we add �X to it; this is Step 2. In other words, the second step of forming
the straight line receiver estimate X̂ is to add �X to the result of Step 1. This gives us the
following formula for the straight line receiver estimate, which we can take as a de�nition:

X̂
�
= �X + �(�X=�Y )(Y � �Y ):

Minimum MS Receiver: The minimum mean-square receiver (minimum MS receiver for short)
is the receiver de�ned by

X̂
�
= E(XjY );

where E(XjY ) is the conditional expectation random variable discussed in our earlier section
on the law of iterated expectation. That is, if the minimum MS receiver input is Y = y, then
the value of the estimate X̂ is very intuitive because it is

E(XjY = y);

the conditional expected value of X given the condition that Y = y. We call this receiver the
\minimum" MS receiver because we will prove in the following that it gives the smallest MS
estimation error of all possible receivers.
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If we have a receiver, let the notation e(receiver) be the mean-square estimation error that
results from using this receiver.

Useful Facts

� The default receiver, blind receiver, straight line receiver, and minimum MS receiver are
successively better receivers, that is, their MS estimation errors get smaller and smaller:

e(default receiver) � e(blind receiver)

e(blind receiver) � e(st line receiver)

e(st line receiver) � e(min MS receiver)

� The default receiver, correlation receiver, straight line receiver, and minimum MS receiver
are successively better receivers, that is, their MS estimation errors get smaller and smaller:

e(default receiver) � e(corr receiver)

e(corr receiver) � e(st line receiver)

e(st line receiver) � e(min MS receiver)

� Sometimes the correlation receiver is better than the blind receiver, and sometimes the blind
receiver is better than the correlation receiver.

Discussion. Let us see why the facts given above are true. First, let us investigate the
performance of the minimum MS receiver vis-a-vis other receivers. Let �(Y ) denote the estimate
of X generated by an arbitrary MS receiver. For each value y of Y , we know from Chapter 2-3
Notes that

E[(X � �(y))2jY = y] = E[(X �E[XjY = y])2jY = y] + (�(y)�E[XjY = y])2:

Therefore,
E[(X � �(y))2jY = y] � E[(X �E[XjY = y])2jY = y]:

Multiplying both sides of the preceding inequality by fY (y) are integrating from �1 to 1, we
obtain the following inequality by the law of iterated expectation:

E[(X � �(Y ))2] � E[(X �E(XjY ))2]: (24.7)

This inequality tells us that the MS estimation error of our arbitrary MS receiver (left hand side
of (24.7)) is greater than or equal to the MS estimation error of the minimum MS receiver (right
hand side of (24.7)). We conclude that the minimum MS receiver is indeed the best of all the MS
receivers.
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Secondly, let's investigate the performance of the straight line receiver vis-a-vis other MS re-
ceivers. By de�nition, the straight line receiver is the MS receiver yielding estimate of the straight
line form

X̂ = AX +B (24.8)

that yields the smallest MS estimation error among all MS receivers generating an estimate of the
straight line form. The correlation receiver, the blind receiver, and the default receiver all yield
estimates of the form (24.8). (The corr receiver yields B = 0, the blind receiver yields A = 0,
and the default receiver yields A = B = 0.) Therefore, the straight line receiver must have MS
estimation error at least as small as these other three types of receivers.

It is easy to argue that the correlation receiver has MS estimation error less than or equal to
that of the default receiver. (Do you see why this is true?) Also, we have already remarked that
the blind receiver is better than the default receiver in our earlier discussion of the blind receiver.

To conclude our discussion, we present a couple of examples which show us that in general the
correlation receiver is not better than the blind receiver and vice-versa.

Example 24.3. Let X;Y be independent, with �X 6= 0 and �Y = 0. Then,

E[XY ] = E[X]E[Y ] = 0

and so the correlation receiver coincides with the default receiver. The blind receiver is better than
the correlation receiver in this case.

Example 24.4. Let X = Y and let X have positive variance. Then the correlation receiver
estimate is X̂ = Y = X, which yields MS estimation error 0. The blind receiver yields MS
estimation error �2X > 0. The correlation receiver is better than the blind receiver in this case.
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Chapters 4-5 Part 11

25.1 Application to Reliability

Before discussing how this application works, we need the following result.

Result: If X is any nonnegative continuously distributed RV, then

E[X] =

Z 1

0
P [X � x]dx: (25.1)

Proof of Result. Let �(x; y) be the function

�(x; y) =

(
1; x � y
0; x < y

Calculus tells us thatZ 1

0

Z 1

0
�(x; y)fX(x)dydx =

Z 1

0

Z 1

0
�(x; y)fX(x)dxdy:

If you evaluate these two double integrals, you will see that formula (25.1) results.
The method I am going to show you gives an easy way to determine the expected lifetime of a

system built up from independently acting subsystems. Rather than give you a general description
of the method, I illustrate the use of the method in a couple of examples.

Example 25.1. We �rst apply the method to the system in Example 24.1, in order to show you
that you obtain the same answer. We have the system

A! 1 ! 2 ! 3 ! B;

80
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with subsystems 1, 2, 3 connected in series. The object of this system is for something to 
ow
from point A to point B. For i = 1; 2; 3, let the random lifetime Ti of subsystem i be exponentially
distributed. Let

ai =
1

E[Ti]
; i = 1; 2; 3:

We want to compute E[TAB ], the expected lifetime of the A to B connection. The so-called
reliability function R(t) of the system is de�ned by

R(t)
�
= P [TA;B � t]; t � 0:

Using formula (25.1), we can express E[TAB ] in terms of the reliability function as

E[TAB ] =

Z 1

0
R(t)dt: (25.2)

The reliability function R(t) is easily determined by Chapter 1 techniques. To do this, de�ne
p1; p2; p3 as follows:

pi = P [Ti � t] = exp(�ait):
We can interpret each pi as the probability that subsystem i works at time t, and we can interpret
R(t) as the probability that the overall system works at time t, where we regard t as a parameter
that is � 0. Suppose we \freeze" the system at time t: In terms of what is happening at time t
alone, we can view each subsystem i = 1; 2; 3 as a relay switch which is either working with prob
pi or not working with prob 1 � pi, and we can view the overall system as a relay circuit which is
working with prob R(t) and not working with prob 1�R(t). Chapter 1 tells us that the probability
that a relay circuit consisting of three switches in series will work is p1p2p3. Thus, it is immediate
that

R(t) = p1p2p3:

Using (25.2), we see that

E[TAB ] =

Z 1

0
p1p2p3dt =

Z 1

0
exp(�(a1 + a2 + a3)t)dt =

1

a1 + a2 + a3
:

This is the same answer we obtained in Example 24.1.

Example 25.2. We now consider the system:

2

3A B

1
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The individual components 1; 2; 3 act independently and have exponentially distributed lifetimes,
and we want to compute the mean lifetime of the overall system. \Freezing" the system in time,
view each component i as a relay switch which works with probability pi. From Chapter 1, we
almost immediately conclude that

(1� (1� p1)(1 � p2))p3

is the prob that the overall \frozen system" works. That is, the reliability function of our system is

R(t) = (1� (1� p1)(1� p2))p3:

The mean lifetime of the A to B connection is therefore

E[TAB ] =

Z 1

0
R(t)dt

=

Z 1

0
(1� (1� p1)(1� p2))p3dt

=

Z 1

0
(1� (1� e�a1)(1� e�a2))e�a3dt

Here is a Matlab script that computes the mean lifetime of the A to B connection, where we assume
that compoents 1; 2; 3 have mean lifetimes 100; 200; 300 (hours), respectively.

syms t

a1=1/100; a2=1/200; a3=1/300;

p1=exp(-a1*t); p2=exp(-a2*t); p3=exp(-a3*t);

R=(1-(1-p1)*(1-p2))*p3; %the "reliability function"

lifetimeAB = int(R,0,inf)

lifetimeAB =

1545/11

We see that the mean lifetime of the A to B connection is 1545=11 = 140:4545 hours.

25.2 Linear Transformation of Corr/Cov Matrices

Suppose we have a linear transformation2
66664
Y1
Y2
...
Yn

3
77775 = A

2
66664
X1

X2
...
Xn

3
77775 ; (25.3)

where
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� X1;X2; � � � ;Xn are given RV's (the \old" RV's).

� A is the n� n linear transformation matrix.

� Y1; Y2; � � � ; Yn are the \new" RV's resulting from applying the linear transformation matrix A
to the Xi's.

We suppose that the correlation and covariances between pairs of Xi's are known. We want to
compute correlation and covariances between pairs of Yi's. We already know one way to do this
which is rather tedious: Using bilinearity properties explained in Section 20.3, we can compute
each separate Cov(Yi; Yj) as a linear combination of covariances of the Xi's. In this section, we
show how matrices may be used to compute all the covariances Cov(Yi; Yj) simultaneously via a
matrix multiplication. Speci�cally, we will prove the following result.

Useful Result: Let
CY = [Cov(Yi; Yj)]

and
CX = [Cov(Xi;Xj)]

be the n� n covariance matrices of the Y RV's and the X RV's, respectively. Then:

CY = ACXA
T : (25.4)

Furthermore, let
RY = [E(YiYj)]

and
RX = [E(XiXj)]

be the n� n correlation matrices of the Y RV's and the X RV's, respectively. Then:

RY = ARYA
T : (25.5)

Proof. I prove (25.5). (The proof of (25.4) is similar.) In (25.3), let's let Y be the column vector
of the Yi's and let's let X be the column vector of the Xi's. We can then rewrite (25.3) in more
compact form as

Y = AX:

Notice that
Y Y T = [YiYj ]:

Let us de�ne the expected value of a square array of RV's to be what we get when we take the
expected value of each individual RV in the array. Then:

E[Y Y T ] = [E(YiYj)] = RY :
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Notice that
Y Y T = (AX)(AX)T = (AX)(XTAT ) = A(XXT )AT ;

where we used the fact that the transpose of a product of matrices is the same thing as the product
of the separate transposes in the reverse order. Then:

RY = E[Y Y T ] = E[A(XXT )AT ] = AE[XXT ]AT = ARXA
T ;

completing the proof of (25.5). In the preceding manipulations, the operation E[A(XXT )AT ] =
AE[XXT ]AT was legitimate because the entries of A and AT are constants and so the expectation
operator E can be pulled inside these two matrices.

25.2.1 Extension to a Constant Term

We can easily extend our \Useful Result" to treat the case in which (25.3) includes an additional
term on the right hand side. Accordingly, let us write our transformation equation as

Y = AX +B;

where Y;A;X are as before, but now we have added a constant column vector B on the right hand
side. Let column vectors �X and �Y be the \mean vectors"

�X = [E(Xi)]

and
�Y = [E(Yi)];

respectively. Then one can prove that (see Chapter 5 of your textbook):

�Y = A�X +B

CY = ACXA
T

RY = CY + �Y �
T
Y (25.6)

Example 25.3. As in Example 20.3, let X;Y be RV's such that

�X;Y = �1=2
�X = 2

�Y = 3

Suppose we de�ne RV's U; V as follows:

U = 3X � Y + 4

V = 5X + Y � 7



LECTURE 25. CHAPTERS 4-5 PART 11 85

In Example 20.3, we computed �U;V using the bilinearity of the two arguments of the covariance
function. We now rework using the matrix method of this section. Write the preceding system of
equations in matrix form: "

U
V

#
=

"
3 �1
5 1

# "
X
Y

#
+

"
4

�7

#
: (25.7)

The covariance matrix of X and Y is"
�2X �X;Y
�X;Y �2Y

#
=

"
4 �3

�3 9

#
:

In computing the covariance matrix of U and V , we can ignore the vector [4;�7]T in (25.7).
Therefore, the covariance matrix of U and V can be computed as:"

�2U �U;V
�U;V �2V

#
=

"
3 �1
5 1

# "
4 �3

�3 9

# "
3 5

�1 1

#
=

"
63 57
57 79

#
:

From the preceding, we see that �U;V = 57. This agrees with the answer we found in Example
20.3. Let us now go further and compute the correlation matrix of U and V . To do this, we need
to know the means of X and Y . Let's take the means of X and Y to each be 1. Then the means
of U and V are computed by:"

�U
�V

#
=

"
3 �1
5 1

# "
1
1

#
+

"
4

�7

#
=

"
6

�1

#
:

(To obtain this, we just replaced X and Y in (25.7) with their means 1 and 1.) Using formula
(25.6), we obtain the correlation matrix of U and V as follows:

"
E[U2] E[UV ]
E[UV ] E[V 2]

#
=

"
�2U �U;V
�U;V �2V

#
+

"
6

�1

# h
6 �1

i

=

"
63 57
57 79

#
+

"
36 �6
�6 1

#

=

"
99 51
51 80

#

25.3 Multivariate Densities

Suppose you have RV's X1;X2; � � � ;Xn that are jointly continuously distributed. Then joint
probability calculations for these RV's would be done with their multivariate density function
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f(x1; x2; � � � ; xn), which is a nonnegative function of n variables that integrates to 1 over all vari-
ables: Z 1

�1

Z 1

�1
� � �
Z 1

�1
f(x1; x2; � � � ; xn)dx1dx2 � � � dxn = 1: (25.8)

Such a joint probability calculation would be of the form

P [(X1;X2; � � � ;Xn) 2 E] =
ZZ

� � �
Z
E
f(x1; x2; � � � ; xn)dx1dx2 � � � dxn;

where E is some n-dimensional region.

Example 25.4. Let � be any n� n symmetric matrix whose eigenvalues are all positive. Then
there is a unique multivariate density function of the form

f(x1; x2; � � � ; xn) = C exp[�(1=2) !x ��1 !x
T
]; (25.9)

where
!
x is our shorthand for the row vector

!
x= (x1; x2; � � � ; xn);

and where C is the positive constant which makes the n-fold integral in (25.8) equal to 1. (You can
�nd an expression for C in your textbook on page 229; we will only rarely have to know what the
precise value of C is.) Suppose we have RV's X1;X2; � � � ;Xn jointly distributed according to the
multivariate density function (25.9). Then we say that these RV's have a multivariate Gaussian

distribution (Section 5.7 of Chapter 5). The matrix � used to de�ne our multivariate density (25.9)
turns out to be the covariance matrix of the Xi's:

CX = [Cov(Xi;Xj)] = �:

Also, the means of the Xi's turn out to be zero:

E[Xi] = 0; i = 1; 2; � � � ; n:
(More generally, if

!
� is an n-dimensional column vector with constant entries, a multivariate density

function of the form
C exp[�(1=2)(!x � !

�)��1(!x � !
�)T ]

would satisfy

!
�=

2
66664
E[X1]
E[X2]

...
E[Xn]

3
77775 :

In our example here, the
!
� is missing from the right side of (25.9) and so the means are all zero.)

We will see more about multivariate Gaussian distributions in subsequent lectures.



LECTURE 25. CHAPTERS 4-5 PART 11 87

Remark. The bivariate Gaussian distribution covered in Section 4.11 of your textbook can
be regarded as a special case of the multivariate Gaussian distribution. If we have a random pair
(X;Y ) with zero means and the bivariate Gaussian distribution, then the joint density would be of
the form

fX;Y (x; y) = C exp

2
4�(1=2)� x y

� �2X �X;Y
�X;Y �2Y

!�1  
x
y

!3
5 : (25.10)

It is interesting to compare this expression with the expression for the bivariate Gaussian density
on page 191 of your textbook. First, you can check that 

�2X �X;Y
�X;Y �2Y

!�1
=

1

1� �2

0
@ 1

�2
X

��
�X�Y

��
�X�Y

1
�2
Y

1
A :

(A matrix times its inverse should be the identiy matrix.) Plugging in for the inverse of the
covariance matrix in (25.10), the density (25.10) becomes

fX;Y (x; y) = C exp

"
�1

2(1� �2)

 �
x

�X

�2
� 2�

�
x

�X

��
y

�Y

�
+

�
y

�Y

�2!#
:

This is precisely the bivariate Gaussian density with zero means given on page 191.

25.4 Preview

In our next few lectures, we will be getting into the statistics part of EE 3025. This coverage
includes the central limit theorem (CLT), the law of large numbers (LLN), and design of con�dence

intervals. Let me give you a brief preview of what these topics are about.
Suppose we have a given probability distribution with mean � and variance �2. (This is called

our sampling distribution.) A sequence n RV's

X1;X2; � � � ;Xn

is called a sample of size n from our sampling distribution if the RV's are independent and if the
distribution of each Xi is the sampling distribution.

Central Limit Theorem

The CLT says that, no matter what the sampling distribution is, the \normalized sum"

(X1 +X2 + � � �+Xn)� n�p
n�

has approximately a Gaussian(0; 1) distribution (standard Gaussian distribution) if n is large. (The
approximation becomes precise in the limit as n!1.)
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Law of Large Numbers

Let �X be the sample mean of our sample of size n, de�ned by

�X
�
=
X1 +X2 + � � � +Xn

n
:

The LLN says that, no matter what the sampling distribution is, the event

f�� � � �X � �+ �g

has probability close to 1 if n is large, where � is any positive number that you select in advance
(you can choose � ahead of time to be as close to zero as you like). Moreover, this probability
becomes 1 in the limit as n!1:

lim
n!1P [�� � � �X � �+ �] = 1:

Con�dence Interval Design

Assume the mean � of our sampling distribution is unknown. The purpose of con�dence interval
design is to �nd a sample size n for which

P [ �X � � � � � �X + �] � p;

where � > 0 and p < 1 are chosen in advance. For example, you might choose � to be something like
0:05 or 0:01 or 0:005. You might choose p to be something like 0:90 or 0:95. If you take p = 0:90,
then you've achieved

P [ �X � � � � � �X + �] � 0:90

and the interval
[ �X � �; �X + �]

is called a 90% con�dence interval for �. On the other hand, if you take p = 0:95, then you've
achieved

P [ �X � � � � � �X + �] � 0:95

and the interval
[ �X � �; �X + �]

is called a 95% con�dence interval for �.
The three topics CLT, LLN, and con�dence interval design are linked as follows: The CLT

implies that the LLN is true, and the LLN implies that any desired con�dence interval will exist.
In our next lectures, you will be presented with more detailed information concerning the CLT,

LLN, and con�dence interval design.


