
EE 3025 Dr. Kie�er13 Re
 13: Mis
ellaneous Random Pro
ess Topi
sDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Levinsion-Durbin Predi
tor Design Algorithm� Simulation/Stability of Single-Server Queue� Power Computation Via Power Spe
tral Density� Introdu
tion to Spe
tral Fa
torization� Gaussian White Noise/Brownian Motion Realizations13.1 Exp 1: Levinson-Durbin Predi
tor Design AlgorithmIn Re
itation 12, you learned how to design a linear predi
tor of any order, with emphasis onthe �rst, se
ond, and third order predi
tor. On Homework 10, you separately designed thebest �rst order predi
tor, the best se
ond order predi
tor, and the best third order predi
torfor a 
ertain WSS dis
rete-time pro
ess Xn. (\Best" predi
tor means that the predi
tora
hieved minimum mean square predi
tion error.)In this experiment, I have you play with the so-
alled Levinson-Durbin Algorithm, whi
hmira
ulously, for any positive integer k, simultaneously designs all j-th order linear predi
torsfor 1 � j � k, given the auto
orrelation fun
tion of a WSS pro
ess Xn.Example 1. In Problem 2 on Homework 10, you designed predi
tors for a WSS pro
essXn whose auto
orrelation fun
tion satis�esRX(�) = 8>>><>>>: 8; � = 0�4; � = �11; � = �20; elsewhereRun the following Matlab s
ript, whi
h is an implementation of the Levinson-Durbin algo-rithm for the above auto
orrelation fun
tion:1




learRX=[8 -4 1 zeros(1,50)℄; %enter in enough auto
orr valuesk=6; %enter in max order of predi
tor you wantRX = toeplitz(RX(1:k+1)); %
reates 
orrelation matrixd(1)=RX(1,1);A(1,1)=RX(1,2)/d(1);for i=1:k-1d(i+1)=d(i)*(1-A(i,i)^2);u=RX(1,i+1:-1:2);v=A(i,1:i);A(i+1,i+1)=(RX(1,i+2)-u*v')/d(i+1);for j=1:iA(i+1,j)=A(i,j)-A(i+1,i+1)*A(i,i+1-j);endendAWhat you see on your 
omputer s
reen is a 6 � 6 matrix. The �rst i entries in row i(i = 1; 2; 3; 4; 5; 6) are the predi
tor 
oeÆ
ients for the i-th order predi
tor. If you lookat the �rst three rows, these should 
oin
ide with the predi
tor 
oeÆ
ients given in thesolutions to Problem 2, Homework 10, on the Web, for the �rst, se
ond, and third orderpredi
tors. If you 
ould run the Levinson-Durbin algorithm for k = 1, then you woulddis
over the following as you look at the generated matrix whose rows yield the predi
tor
oeÆ
ients for every single �nite order linear predi
tor: as you go down ea
h 
olumn, thepredi
tor 
oeÆ
ients 
onverge. What these 
olumns 
onverge to is the \IIR predi
tor", thepredi
tor that uses all of the previous observations to predi
t what is going to happen next.This would be the very best of all linear predi
tors, regardless of order.Example 2. Now let the auto
orrelation fun
tion beRX(�) = 8>>>>>><>>>>>>: 12; � = 08; � = �13; � = �21; � = �30; elsewhereUse the Levinson-Durbin s
ript in Example 1 to �nd the predi
tors of order 1 thru 7. (In these
ond line of the s
ript, you enter an RX ve
tor whi
h gives at least the �rst eight entriesof the auto
orrelation fun
tion; in the third line of the s
ript, you enter the maximum orderk=7 that you are allowing. In general, in Line 2, you need to enter in the ve
tor of k + 1entries RX(0); RX(1); � � � ; RX(k)if your maximum predi
tor order is k.Example 3. Now use the Levinson-Durbin algorithm to generate the predi
tors of the�rst few orders for the auto
orrelation fun
tionRX(�) = 10(1=2)j� j:2



Do the rows of the generated matrix look kind of strange? What do you think is happeninghere? (Note: If you are not seeing something \strange", you possibly did something wrong,and you should ask your re
itation instru
tor to help you.)13.2 Exp 2: Simulation/Stability of Single-Server QueueWe are going to examine the \single-server queueing system model". You 
an 
on
eptualizethis system via the blo
k diagramarrivals ! server ! departuresTo help you �x the ideas in your mind, you 
an think of think of the queueing system in thefollowing way:� Think of the \arrivals" as message pa
kets arriving at di�erent random times. Thesearrival times are modeled by a Poisson pro
ess with an averate rate of � arrivals perse
ond. Ea
h message pa
ket, upon arrival to the system, goes to the end of a queue,and is not pro
essed by the system server until it rea
hes the beginning of the queue.� Think of the \server" as an e-mail server or router whi
h re
eives ea
h message pa
ketand then pro
esses it when the pa
ket rea
hes the front of the queue. The server isassumed to pro
ess pa
kets at the rate of � pa
kets per se
ond.� Think of the \departures" as the message pa
kets leaving the system at various timesafter being pro
essed by the server.Ea
h message pa
ket has an \arrival time" and a \departure time". These two times arerelated by the formula:departure time = (arrival time) + (waiting time) + (servi
e time)The \waiting time" is the length of time that it takes for the pa
ket to move to the frontof the queue, and the \servi
e time" is the length of time that it takes for the pa
ket to bepro
essed by the server.We want to use Matlab to simulate arrival times, waiting times, servi
e times, and de-parture times. Here is how we 
an do it:� The �rst pa
ket arrives at timearrivaltime(1)=-log(rand(1,1))/lambda;� The waiting time for the �rst pa
ket is thenwaitingtime(1)=0;This is be
ause the queue is empty when the �rst 
ustomer arrives.� The servi
e time for the �rst pa
ket is 3



servi
etime(1)=-log(rand(1,1))/mu;� The departure time for the �rst pa
ket is thereforedeparturetime(1)=arrivaltime(1)+waitingtime(1)+servi
etime(1);� The arrival time for the se
ond pa
ket is 
omputed as:interarrivaltime(1)=-log(rand(1,1))/lambda; %time between pa
kets 1 and 2arrivaltime(2)=arrivaltime(1)+interarrivaltime(1);� The waiting time, servi
e time, and departure time for the se
ond pa
ket are:waitingtime(2)=max(0,waitingtime(1)+servi
etime(1)-interarrivaltime(1));servi
etime(2)=-log(rand(1,1))/mu;departuretime(2)=arrivaltime(2)+waitingtime(2)+servi
etime(2);� The arrival time, waiting time, servi
e time, and departure time for the third pa
ketwould then be Matlab simulated as follows:interarrivaltime(2)=-log(rand(1,1))/lambda;arrivaltime(3)=arrivaltime(2)+interarrivaltime(2);waitingtime(3)=max(0,waitingtime(2)+servi
etime(2)-interarrivaltime(2));servi
etime(3)=-log(rand(1,1))/mu;departuretime(3)=arrivaltime(3)+waitingtime(3)+servi
etime(3);

interarrivaltime(i)

servicetime(i)waitingtime(i)

departurearrivalarrival
     i
packet

  i+1
packet

    i
packet
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Continuing in this way, we 
an simulate the arrival time, servi
e time, waiting time, anddeparture time of ea
h message pa
ket. Using the pre
eding �gure, one 
an show that thewaiting times are generated re
ursively by the following equation in Matlab syntax:waitingtime(i+1)=max(0,waitingtime(i)+servi
etime(i)-interarrivaltime(i));For the s
enario in the �gure, it is 
lear the pa
ket i+ 1's waiting time is4



waitingtime(i)+servi
etime(i)-interarrivaltime(i)On the other hand, the departure of pa
ket i might o

ur before pa
ket i+1 arrives. In this
ase, the waiting time for pa
ket i + 1 is zero andwaitingtime(i)+servi
etime(i)-interarrivaltime(i) < 0so thatwaitingtime(i+1)=max(0,waitingtime(i)+servi
etime(i)-interarrivaltime(i));gives the 
orre
t waiting time in all 
ases.Stability of the Queue. Does the expe
ted length of the queue remain bounded astime t goes to in�nity? This is 
alled a stable queue. Or, does the expe
ted length of thequeue blow up as t!1? This is an unstable queue. Using mathemati
s that is beyond thes
ope of EE 3025, one 
an establish the following result 
on
erning stability:Case 1: Stable Queue. The single-server queueing system is stable if � < � (that is, thearrival rate is less than the servi
e rate).Case 2: Unstable Queue. The single-server queueing system is unstable if � � �.We are now going to do a Matlab simulation that will suggest to you that the pre
edingresult is true. Our simulation will involve two stair
ase fun
tions 
alled In(t) and Out(t).The fun
tion In(t) is the realization of the Poisson arrival pro
ess: the value of In(t) atea
h time t � 0 is the number of arrivals that have taken pla
e up to and in
luding time t.If you look ba
k at Experiment 5 of Re
itation 11, you will see Matlab 
ode for simulatingand plotting the fun
tion In(t). At ea
h time t � 0, the fun
tion Out(t) is de�ned tobe the number of departures from the queueing system that have taken pla
e up to andin
luding time t. When you plot the fun
tion In(t) and the fun
tion Out(t) on the sameset of 
oordinate axes, you will see that the stair
ase given by In(t) lies above the stair
asegiven by Out(t), that is, In(t) � Out(t)It is the gap between these two stair
ase plots that determines stability. The di�eren
e isIn(t)-Out(t)whi
h has the interpretation of being the length of the queue as a fun
tion of time t. Youeither have:Case 1: Stable Queue. E[In(t)-Out(t)℄ remains bounded as t!1. (That is, on aver-age, the gap between the two plots 
an only be
ome so large and no larger. Equiva-lently, the expe
ted length of the queue is leveling o� with time.)Case 2: Unstable Queue. E[In(t)-Out(t)℄ blows up as t ! 1. (That is, on average,the gap between the two plots is getting bigger and bigger with time. Equivalently,the expe
ted length of the queue is blowing up with time.)5



We will �rst do a simulation of the queueing system with � < � to see that Case 1 holds,and then we will do a simulation with � � � to see that Case 2 holds.Example 4. In this example, we take the arrival rate to be � = 1 arrivals/se
ond and theservi
e rate to be � = 2 pa
kets/se
ond. Sin
e � < �, our queueing system will be stable.Running the following Matlab s
ript, you simulate the queueing system from time t = 0 totime t = 10, and obtain plots of In(t) and Out(t) on the same set of axes:lambda=1; mu=2;T=10;n=1000;interarrivaltimes=-log(rand(1,n))/lambda;servi
etimes=-log(rand(1,n))/mu;w(1)=0;for i=2:n;w(i)=max(0,-interarrivaltimes(i)+servi
etimes(i-1)+w(i-1)); endarrivaltimes=
umsum(interarrivaltimes);waitingtimes=w;departuretimes=arrivaltimes + waitingtimes + servi
etimes;t=0:.01:T;for i=1:length(t)
ount1(i)=max(round(100*(departuretimes-t(i)))==0);
ount2(i)=max(round(100*(arrivaltimes-t(i)))==0); endOut=
umsum(
ount1);In=
umsum(
ount2);plot(t,In,t,Out)Looking at the gap between the two stair
ase fun
tions in the pre
eding �gure, we see thatat any time, the length of the queue appears to either 0, 1, or 2. The length of the queuedoes not appear to be blowing up, and so the system appears to be stable. To make theresult more 
onvin
ing, we obtained the following In(t) versus Out(t) plot when the timeaxis is expanded to go from t = 0 to t = 100 (
hange the se
ond line of the Matlab s
ript toT=100;):
Example 5. In this example, we examine the unstable queue in whi
h the arrival rate is� = 2 and the servi
e rate is � = 1. We simply 
hanged the �rst line of 
ode in the Example4 Matlab s
ript to obtain the plots of In(t) and Out(t):

6
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upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)

The two plots 
learly seem to be diverging from one another. This does indeed suggest thatwe have an unstable queue.13.3 Exp 3: Power Computation Via Power Spe
tral DensityLet Xn be a dis
rete-time WSS pro
ess. The power spe
tral density SX(f) of this pro
ess isthe dis
rete-time Fourier transform of the auto
orrelation fun
tion RX(�). The power PXgenerated by the X pro
ess 
an be 
omputed as follows:PX = Z 10 SX(f)df: (1)The following example illustrates this fa
t.Example 6. Let Zn be the Gaussian white noise pro
ess with unit varian
e. Let Xn bethe pro
ess de�ned by �ltering the random signal Zn as follows:Xn = (0:5)Xn�1 + (0:5)Zn (2)You are going to 
ompute the power PX generated by the X pro
ess using SX(f). First youhave to �nd SX(f). In Chapter 11, you learn thatSX(f) = jH(f)j2SZ(f) = jH(f)j2;7
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upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)

where H(f) is the frequen
y response fun
tion of the �lter given by (2), and you are usingthe fa
t that SZ(f) = 1 for all frequen
ies f . Fourier transforming the equation (2), you getthe equation X(f) = (0:5) exp(�j2�f)X(f) + (0:5)Z(f):� Use pen
il and paper to argue that the frequen
y response H(f) = X(f)=Z(f) is givenby H(f) = 12� exp(�j2�f) :� Use pen
il and paper to do the algebrai
 manipulations involved in 
omputing jH(f)j2,showing that SX(f) = jH(f)j2 = 15� 4 
os(2�f) :� Run the following Matlab 
ode to 
ompute PX a

ording to the formula (1):syms fPX=eval(int(1/(5-4*
os(2*pi*f)),f,0,1))Here is a way you 
an 
he
k your work. In the 
ourse of 
overing Chapter 11, we will showthat sin
e the Z pro
ess is white noise, then we have the following formula relating PX and8
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PZ : PX = PZ [ 1Xn=�1h[n℄2℄; (3)where h[n℄ is the impulse response of the �lter given by (2). (Warning: Don't use thisformula unless Z is white!) In our 
ase here, h[n℄ takes the formh[n℄ = A(1=2)nu[n℄for some 
onstant A. What is A? (You 
an �nd out from studying equation (2).) In equation(3), sum the geometri
 series on the right hand side, and use the fa
t that PZ = 1 to dedu
ewhat the value of PX is. Did you obtain the same value for PX as found using formula (1)?13.4 Exp 4: Introdu
tion to Spe
tral Fa
torizationWe 
onsider the simplest possible �lter design problems that 
an be solved by a te
hnique
alled spe
tral fa
torization. Let Zn be a dis
rete-time white noise pro
ess with unit varian
e.Suppose we �lter the random signal Zn using a dis
rete-time 
ausal stable linear time-invariant �lter with transfer fun
tion H(z):Zn ! H(z) ! Xn9



As indi
ated in the blo
k diagram, the �lter output is WSS random signal Xn. We wantto design the �lter (that is, �nd H(z)) so that the auto
orrelation fun
tion RX(�) is thefollowing: RX(�) = 8><>: 5; � = 02; � = �10; elsewhereI will guide you through the following steps for a

omplishing this goal.Step 1: We take the z transform of RX(�). We get SX(z), the power spe
tral density of Xpro
ess in z domain: SX(z) = 5 + 2z + 2z�1:Do you understand that the pre
eding equation gives the z transform of RX(�)? If youdon't understand, ask your re
itation instru
tor.Step 2: This step is a \root �nding" step. Before I tell you what to do, you need someba
kground. From a result we will get in Chapter 11, we haveSX(z) = SZ(z)H(z)H(z�1):In our 
ase, sin
e the input is white, we have SZ(z) = 1, and this equation be
omes5 + 2z + 2z�1 = H(z)H(z�1):Let us attempt a solution of this equation of the form H(z) = a + bz�1 for someunknown real 
onstants a; b. We then have5 + 2z + 2z�1 = (a+ bz�1)(a + bz): (4)For Step 2, write the left side as 2z2 + 5z + 2z ;(by fa
toring out a z�1), and then �nd the two roots of the polynomial 2z2 + 5z + 2by exe
uting the Matlab line roots([2 5 2℄)Look at the two roots you see on your 
omputer s
reen. Are they real? Are theyre
ipro
als of one another?Step 3: Pi
k either root from Step 2 and 
all it r. Write the equation (4) as5 + 2z + 2z�1 = 
(1� rz�1)(1� rz);where 
 is an unknown positive 
onstant. For Step 3, multiply out the right side of thepre
eding equation and 
ompare it to the left side in order to �gure out what 
 is.10



Step 4: Take your �lter transfer fun
tion asH(z) = p
(1� rz�1):Example 7. Suppose we now want to design the �lter transfer fun
tion H(z) so that the�lter output power spe
tral density isSX(f) = 17� 4 
os(2�f) :Design H(z) as a 
ausal �lter so that this will be true. I will get you started. In z domain,
os(2�f) be
omes
os(2�f) = (1=2)[exp(2�fj) + exp(�2�fj) = (1=2)[z + z�1℄:Therefore, the power spe
tral density in z domain isSX(z) = 17� 2z � 2z�1 :Fa
tor 7� 2z� 2z�1 a

ording to the method in Steps 2-3 above. You will obtain somethingof the form 7� 2z � 2z�1 = 
(1� rz�1)(1� rz):Then take H(z) = 1p
(1� rz�1) :In Step 2, the \root �nding step", you will have two 
hoi
es for the root r. Be sure to 
hoosethe one that makes the �lter stable.13.5 Exp 5:Gaussian White Noise/Brownian Motion RealizationsIn this experiment, you see how to simulate realizations of the 
ontinuous-time Gaussianwhite noise pro
ess (GWN pro
ess), and the Brownian motion pro
ess (also 
alled Wienerpro
ess).The GWN pro
ess X(t) satis�es RX(�) = AÆ(�) (5)for some positive 
onstant A. Be
ause the delta fun
tion blows up at � = 0, the GWNpro
ess has in�nite power. Therefore, the GWN pro
ess is not really physi
ally realizable.But, it 
an be approximated (be
ause a delta fun
tion 
an be approximated as a re
tangularpulse with very high amplitude and very short duration). The following example uses Matlabto 
reate plots of realizations of a pro
ess that is approximately GWN.Example 8. In this example, you simulate realizations of the GWN pro
ess X(t) withauto
orrelation fun
tion (5). The basi
 idea behind simulating a realization of X(t) for0 � t � T (where T is a positive integer) goes as follows: Pi
k a large positive integer n, andform a ve
tor x of n + 1 independent pseudorandom samples from a gaussian distributionwith mean 0 and varian
e A=�, where � = T=n. Then, form a \time axis", whi
h is a ve
tort 
onsisting of n+ 1 equally spa
ed entries from 0 to T in
lusively; exe
uting the 
ommand\plot(t,x)" then gives the desired GWN realization. Run the 
ode:11



A=1; T=10; n=10000;Delta=T/n;;t=0:Delta:T;white_noise=sqrt(A)*Delta^(-0.5)*randn(1,length(t));plot(t,white_noise)title('Gaussian white noise realization')If you pass GWN through an integrator, you obtain the Brownian motion pro
ess:GWN ! Z t0 ! X(t) = Brownian motion pro
essEven though GWN is physi
ally unrealizable, the Brownian motion pro
ess is physi
allyrealizable. In fa
t, the realizations of the Brownian motion pro
ess are 
ontinuous fun
tionsof t. The following example allows you to use Matlab to plot realizations of a Brownianmotion pro
ess.Example 9. In obtaining Brownian motion pro
ess from integration of GWN, you 
anapproximate the 
ontinuous-time integrator by a dis
rete-time integrator implemented bythe \
umsum" 
ommand in Matlab. Run the following s
ript whi
h will generate the plot ofa Brownian motion pro
ess realization:A=1; T=10; n=10000;Delta=T/n;t=0:Delta:T;x=Delta^(-0.5)*randn(1,n);w=[0 
umsum(Delta*x)℄;plot(t,w)title('Brownian motion pro
ess realization')The fa
tor of � in the dis
rete-time integrator is be
auseZ i�(i�1)� x(t)dt � �x(i�):Although Brownian motion pro
ess realizations are 
ontinuous, they are also nowhere dif-ferentiable! This is why your plot might look �nd of funny. In fa
t, even if you put therealization 
urve under a mi
ros
ope, it will still look \spiky". (Have you heard of fra
tals?Brownian motion pro
ess realizations are fra
tals|they are not 1-D 
urves but rather havea dimension somewhere between 1-D and 2-D.)The Brownian motion pro
ess is very important for appli
ations. For example, there isan extension of the Brownian motion pro
ess to 2-D that 
an be used to solve Lapla
e'sequation �2V=�x2 + �2V=�y2 = 0in a bounded region of the xy-plane, in whi
h a boundary 
ondition is pla
ed on the boundaryof the region. (To obtain V (x; y) at an interior point (x; y) of the region, you simply start the2-D Brownian motion pro
ess there and let it run until it hits the boundary. The expe
tedboundary value is equal to V (x; y).) 12



EE 3025 Re
itation 13 Lab Form� NAME AND ID NUMBER OF TEAM MEMBER 1:� NAME AND ID NUMBER OF TEAM MEMBER 2:� NAME AND ID NUMBER OF TEAM MEMBER 3:Let Zn be a white noise pro
ess with unit varian
e. In this report, you �nd �lter 
oeÆ
ientsA;B so that the �ltering operation Xn = AZn +BZn�1 (6)yields WSS pro
ess Xn satisfyingRX(0) = 6; RX(�1) = 1; RX(�) = 0 elsewhere:(a) The desired A;B must satisfy the equationsA2 +B2 = 6AB = 1Run the following Matlab s
ript whi
h �nds a solution for A;B.syms a b[a,b℄ = solve('a^2+b^2=6' , 'a*b=1');A=double(a(1))B=double(b(1))Fill in the blanks for A;B at right (four de
imal pla
es).(b) Using pen
il and paper and high s
hool algebra, verify that(A+Bz�1)(A+Bz) = 6 + z + z�1 (7)Write down your work below (or on the ba
k if you run out of room).
(
) You will learn in Chapter 11 of text that the \spe
tral fa
torization" in equation (7)means that the �ltering operation (6) will give us the desired auto
orrelation fun
tionRX(�). Here you do a Matlab simulation to verify this. Run the s
ript:A = ; B = ; %enter the A,B values you found in (a)n=1000000;z=randn(1,n); %white noise inputs to filterx=A*z(2:n) + B*z(1:n-1); %filter outputsRX0_hat = mean(x.^2)RX1_hat = mean(x(1:n-2).*x(2:n-1))Write down the auto
orrelation estimates (four de
imal pla
es) yielded by Matlab:13


