EE 3025 Dr. Kieffer

13 Rec 13: Miscellaneous Random Process Topics

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

e Levinsion-Durbin Predictor Design Algorithm

Simulation/Stability of Single-Server Queue
e Power Computation Via Power Spectral Density

Introduction to Spectral Factorization

Gaussian White Noise/Brownian Motion Realizations

13.1 Exp 1: Levinson-Durbin Predictor Design Algorithm

In Recitation 12, you learned how to design a linear predictor of any order, with emphasis on
the first, second, and third order predictor. On Homework 10, you separately designed the
best first order predictor, the best second order predictor, and the best third order predictor
for a certain WSS discrete-time process X,. (“Best” predictor means that the predictor
achieved minimum mean square prediction error.)

In this experiment, I have you play with the so-called Levinson-Durbin Algorithm, which
miraculously, for any positive integer k, simultaneously designs all j-th order linear predictors
for 1 < 5 <k, given the autocorrelation function of a WSS process X,,.

Ezxample 1. In Problem 2 on Homework 10, you designed predictors for a WSS process
X,, whose autocorrelation function satisfies

8 17=0
4, 7=+l
Bxrl=9 1 7o

0, elsewhere

Run the following Matlab script, which is an implementation of the Levinson-Durbin algo-
rithm for the above autocorrelation function:



clear

RX=[8 -4 1 zeros(1,50)]; %enter in enough autocorr values
k=6; henter in max order of predictor you want
RX = toeplitz(RX(1:k+1)); Jcreates correlation matrix
d(1)=RX(1,1);

A(1,1)=RX(1,2)/d(1);

for i=1:k-1

d(i+1)=d(i)*(1-A(i,1)"2);

u=RX(1,i+1:-1:2);

v=A(i,1:1);

A(i+1,i+1)=(RX(1,i+2)-u*v’)/d(i+1);

for j=1:1

AGi+1,3)=A(i, ) -Ai+1,i+1)*A(i,i+1-7);

end

end

A

What you see on your computer screen is a 6 x 6 matrix. The first ¢ entries in row i
(1 = 1,2,3,4,5,6) are the predictor coefficients for the i-th order predictor. If you look
at the first three rows, these should coincide with the predictor coefficients given in the
solutions to Problem 2, Homework 10, on the Web, for the first, second, and third order
predictors. If you could run the Levinson-Durbin algorithm for & = oo, then you would
discover the following as you look at the generated matrix whose rows yield the predictor
coefficients for every single finite order linear predictor: as you go down each column, the
predictor coefficients converge. What these columns converge to is the “IIR predictor”, the
predictor that uses all of the previous observations to predict what is going to happen next.
This would be the very best of all linear predictors, regardless of order.

Ezample 2. Now let the autocorrelation function be

12, 7=0

8, 7T==l1
Rx<7') = 3, T=42

1, 7=43

0, elsewhere

Use the Levinson-Durbin script in Example 1 to find the predictors of order 1 thru 7. (In the
second line of the script, you enter an RX vector which gives at least the first eight entries
of the autocorrelation function; in the third line of the script, you enter the maximum order
k=7 that you are allowing. In general, in Line 2, you need to enter in the vector of k& + 1
entries

RX(O)v RX(I)v T RX(k)
if your maximum predictor order is k.

Example 3. Now use the Levinson-Durbin algorithm to generate the predictors of the
first few orders for the autocorrelation function

Rx () =10(1/2)I".



Do the rows of the generated matrix look kind of strange? What do you think is happening
here? (Note: If you are not seeing something “strange”, you possibly did something wrong,
and you should ask your recitation instructor to help you.)

13.2 Exp 2: Simulation/Stability of Single-Server Queue

We are going to examine the “single-server queueing system model”. You can conceptualize
this system via the block diagram

arrivals — [server | — departures

To help you fix the ideas in your mind, you can think of think of the queueing system in the
following way:

e Think of the “arrivals” as message packets arriving at different random times. These
arrival times are modeled by a Poisson process with an averate rate of A arrivals per
second. Each message packet, upon arrival to the system, goes to the end of a queue,
and is not processed by the system server until it reaches the beginning of the queue.

e Think of the “server” as an e-mail server or router which receives each message packet
and then processes it when the packet reaches the front of the queue. The server is
assumed to process packets at the rate of u packets per second.

e Think of the “departures” as the message packets leaving the system at various times
after being processed by the server.

Each message packet has an “arrival time” and a “departure time”. These two times are
related by the formula:

departure time = (arrival time) + (waiting time) + (service time)

The “waiting time” is the length of time that it takes for the packet to move to the front
of the queue, and the “service time” is the length of time that it takes for the packet to be
processed by the server.

We want to use Matlab to simulate arrival times, waiting times, service times, and de-
parture times. Here is how we can do it:

e The first packet arrives at time
arrivaltime(1)=-log(rand(1,1))/lambda;

e The waiting time for the first packet is then
waitingtime(1)=0;

This is because the queue is empty when the first customer arrives.

e The service time for the first packet is



servicetime(1)=-log(rand(1,1))/mu;
e The departure time for the first packet is therefore
departuretime(l)=arrivaltime(1)+waitingtime(1l)+servicetime(1);
e The arrival time for the second packet is computed as:

interarrivaltime(1)=-log(rand(1,1))/lambda; %time between packets 1 and 2
arrivaltime(2)=arrivaltime(l)+interarrivaltime(1);

e The waiting time, service time, and departure time for the second packet are:

waitingtime(2)=max(0,waitingtime(1)+servicetime(1l)-interarrivaltime(1));
servicetime(2)=-log(rand(1,1))/mu;
departuretime(2)=arrivaltime(2)+waitingtime(2)+servicetime(2);

e The arrival time, waiting time, service time, and departure time for the third packet
would then be Matlab simulated as follows:

interarrivaltime(2)=-log(rand(1,1))/lambda;
arrivaltime(3)=arrivaltime(2)+interarrivaltime(2);
waitingtime(3)=max(0,waitingtime (2)+servicetime(2)-interarrivaltime(2));
servicetime(3)=-log(rand(1,1))/mu;
departuretime(3)=arrivaltime(3)+waitingtime(3)+servicetime(3);

—~— waitingtime(i) — —+—— servicetime(i)—

S o o !
packet packet packet

i i+1 i
arrival arriva departure

<— nterarrivaltime(i) ————

Continuing in this way, we can simulate the arrival time, service time, waiting time, and
departure time of each message packet. Using the preceding figure, one can show that the
waiting times are generated recursively by the following equation in Matlab syntax:

waitingtime (i+1)=max(0,waitingtime(i)+servicetime(i)-interarrivaltime(i));

For the scenario in the figure, it is clear the packet i + 1’s waiting time is



waitingtime(i)+servicetime(i)-interarrivaltime(i)

On the other hand, the departure of packet i might occur before packet 41 arrives. In this
case, the waiting time for packet 7 + 1 is zero and

waitingtime(i)+servicetime(i)-interarrivaltime(i) < O
so that
waitingtime(i+1)=max(0,waitingtime(i)+servicetime(i)-interarrivaltime(i));

gives the correct waiting time in all cases.

Stability of the Queue. Does the expected length of the queue remain bounded as
time ¢ goes to infinity? This is called a stable queue. Or, does the expected length of the
queue blow up as t — oo? This is an unstable queue. Using mathematics that is beyond the
scope of EE 3025, one can establish the following result concerning stability:

Case 1: Stable Queue. The single-server queueing system is stable if A < p (that is, the
arrival rate is less than the service rate).

Case 2: Unstable Queue. The single-server queueing system is unstable if y < \.

We are now going to do a Matlab simulation that will suggest to you that the preceding
result is true. Our simulation will involve two staircase functions called In(t) and Out(t).
The function In(t) is the realization of the Poisson arrival process: the value of In(t) at
each time ¢ > 0 is the number of arrivals that have taken place up to and including time t.
If you look back at Experiment 5 of Recitation 11, you will see Matlab code for simulating
and plotting the function In(t). At each time £ > 0, the function Out(t) is defined to
be the number of departures from the queueing system that have taken place up to and
including time ¢. When you plot the function In(t) and the function Qut(t) on the same
set of coordinate axes, you will see that the staircase given by In(t) lies above the staircase
given by Out (t), that is,

In(t) > Out(t)
It is the gap between these two staircase plots that determines stability. The difference is
In(t)-O0ut(t)

which has the interpretation of being the length of the queue as a function of time t. You
either have:

Case 1: Stable Queue. E[In(t)-0ut(t)]| remains bounded as ¢t — oc. (That is, on aver-
age, the gap between the two plots can only become so large and no larger. Equiva-
lently, the expected length of the queue is leveling off with time.)

Case 2: Unstable Queue. E[In(t)-0ut(t)] blows up as t — oo. (That is, on average,
the gap between the two plots is getting bigger and bigger with time. Equivalently,
the expected length of the queue is blowing up with time.)



We will first do a simulation of the queueing system with A < p to see that Case 1 holds,
and then we will do a simulation with A > u to see that Case 2 holds.

Ezample 4. In this example, we take the arrival rate to be A = 1 arrivals/second and the
service rate to be u = 2 packets/second. Since A < p, our queueing system will be stable.
Running the following Matlab script, you simulate the queueing system from time ¢ = 0 to
time ¢t = 10, and obtain plots of In(t) and Out(t) on the same set of axes:

lambda=1; mu=2;

T=10;

n=1000;

interarrivaltimes=-log(rand(1,n))/lambda;
servicetimes=-log(rand(1,n))/mu;

w(1)=0;

for i=2:n;
w(i)=max(0,-interarrivaltimes(i)+servicetimes(i-1)+w(i-1)); end
arrivaltimes=cumsum(interarrivaltimes);

waitingtimes=w;

departuretimes=arrivaltimes + waitingtimes + servicetimes;
t=0:.01:T;

for i=1:length(t)

countl(i)=max(round(100* (departuretimes-t(i)))==0);
count2(i)=max (round (100* (arrivaltimes-t(i)))==0); end
Out=cumsum(countl) ;

In=cumsum(count?2) ;

plot(t,In,t,0ut)

Looking at the gap between the two staircase functions in the preceding figure, we see that
at any time, the length of the queue appears to either 0, 1, or 2. The length of the queue
does not appear to be blowing up, and so the system appears to be stable. To make the
result more convincing, we obtained the following In(t) versus Out(t) plot when the time
axis is expanded to go from ¢t = 0 to £ = 100 (change the second line of the Matlab script to
T=100;):

Ezample 5. In this example, we examine the unstable queue in which the arrival rate is
A = 2 and the service rate is © = 1. We simply changed the first line of code in the Example
4 Matlab script to obtain the plots of In(t) and Out(t):



upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)
14 T T T T T T T

12

10 *

number of arrivals/departures up through time t

time axis t

The two plots clearly seem to be diverging from one another. This does indeed suggest that
we have an unstable queue.

13.3 Exp 3: Power Computation Via Power Spectral Density

Let X, be a discrete-time WSS process. The power spectral density Sx (f) of this process is
the discrete-time Fourier transform of the autocorrelation function Ry (7). The power Px
generated by the X process can be computed as follows:

Pr= [ Sx(f)ar. )

The following example illustrates this fact.

Example 6. Let Z, be the Gaussian white noise process with unit variance. Let X,, be
the process defined by filtering the random signal Z,, as follows:

X, = (0.5) X, + (0.5)2, (2)

You are going to compute the power Py generated by the X process using Sy (f). First you
have to find Sx(f). In Chapter 11, you learn that

Sx(f) = [H()I*Sz(f) = [H(f)I,

7



upper plot is In(t), lower plot is Out(t) (arrival rate = 1, service rate = 2)
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where H(f) is the frequency response function of the filter given by (2), and you are using
the fact that Sy (f) =1 for all frequencies f. Fourier transforming the equation (2), you get
the equation

X(f) = (0.5) exp(—j27 )X () + (0.5)Z(f).

e Use pencil and paper to argue that the frequency response H(f) = X (f)/Z(f) is given
by
1

H(f) = 2 —exp(—j2rf)

e Use pencil and paper to do the algebraic manipulations involved in computing |H (f)|?,

showing that
1

Sx(f) = H(f)] = 5 4cos(2nf)’

e Run the following Matlab code to compute Px according to the formula (1):

syms f
PX=eval(int (1/(5-4*cos(2*pi*f)),f,0,1))

Here is a way you can check your work. In the course of covering Chapter 11, we will show
that since the Z process is white noise, then we have the following formula relating Px and



upper plot is In(t), lower plot is Out(t) (arrival rate = 2, service rate = 1)
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Px =P 2 hin]’]. (3)

where h[n] is the impulse response of the filter given by (2). (Warning: Don’t use this
formula unless Z is white!) In our case here, h[n| takes the form

hin] = A(1/2)"u[n]

for some constant A. What is A7 (You can find out from studying equation (2).) In equation
(3), sum the geometric series on the right hand side, and use the fact that Py = 1 to deduce
what the value of Py is. Did you obtain the same value for Px as found using formula (1)?

13.4 Exp 4: Introduction to Spectral Factorization

We consider the simplest possible filter design problems that can be solved by a technique
called spectral factorization. Let Z, be a discrete-time white noise process with unit variance.
Suppose we filter the random signal 7, using a discrete-time causal stable linear time-
invariant filter with transfer function H(z):

Zn = |H(z)|— X,




As indicated in the block diagram, the filter output is WSS random signal X,,. We want
to design the filter (that is, find H(z)) so that the autocorrelation function Rx(7) is the
following:
5, 7=0
Rx(r)=¢% 2, 7=+=l1
0, elsewhere

I will guide you through the following steps for accomplishing this goal.

Step 1: We take the z transform of Rx (7). We get Sx(z), the power spectral density of X
process in z domain:
Sx(z) =5+2z+2z1.

Do you understand that the preceding equation gives the z transform of Ry (7)? If you
don’t understand, ask your recitation instructor.

Step 2: This step is a “root finding” step. Before I tell you what to do, you need some
background. From a result we will get in Chapter 11, we have

Sx(z) = Sz(2)H(2)H(z ).
In our case, since the input is white, we have S;(z) = 1, and this equation becomes
5+42z+22 ' =H(2)H(z ).

Let us attempt a solution of this equation of the form H(z) = a + bz~' for some
unknown real constants a,b. We then have

5+22+22 1 = (a+bz 1) (a+bz). (4)
For Step 2, write the left side as

222 + 52 42

Y

z

(by factoring out a z'), and then find the two roots of the polynomial 2z% + 5z + 2
by executing the Matlab line

roots([2 5 2])

Look at the two roots you see on your computer screen. Are they real? Are they
reciprocals of one another?

Step 3: Pick either root from Step 2 and call it r. Write the equation (4) as
54+2:+22 P =c(l—rz (1 —rz),

where ¢ is an unknown positive constant. For Step 3, multiply out the right side of the
preceding equation and compare it to the left side in order to figure out what ¢ is.

10



Step 4: Take your filter transfer function as

H(z)=+c(l—rz1).

Ezample 7. Suppose we now want to design the filter transfer function H(z) so that the
filter output power spectral density is

1

S = .
x(f) 7 —4cos(2mf)

Design H(z) as a causal filter so that this will be true. T will get you started. In z domain,

cos(2m f) becomes
cos(2rf) = (1/2)[exp(2r ) + exp(~27j) = (1/2)[z + =]
Therefore, the power spectral density in z domain is
1
7T—2z— 2271

Factor 7 — 2z — 227! according to the method in Steps 2-3 above. You will obtain something
of the form

Sx(z) =

72222 =c(1—rz N1 —rz).

Then take 1

Vei=r=)
In Step 2, the “root finding step”, you will have two choices for the root r. Be sure to choose
the one that makes the filter stable.

H(z) =

13.5 Exp 5:Gaussian White Noise/Brownian Motion Realizations

In this experiment, you see how to simulate realizations of the continuous-time Gaussian
white noise process (GWN process), and the Brownian motion process (also called Wiener

process).
The GWN process X (t) satisfies

Ry(7) = Ad(7) (5)

for some positive constant A. Because the delta function blows up at 7 = 0, the GWN
process has infinite power. Therefore, the GWN process is not really physically realizable.
But, it can be approximated (because a delta function can be approximated as a rectangular
pulse with very high amplitude and very short duration). The following example uses Matlab
to create plots of realizations of a process that is approximately GWN.

Ezample 8. In this example, you simulate realizations of the GWN process X (¢) with
autocorrelation function (5). The basic idea behind simulating a realization of X () for
0 <t < T (where T is a positive integer) goes as follows: Pick a large positive integer n, and
form a vector x of n + 1 independent pseudorandom samples from a gaussian distribution
with mean 0 and variance A/A, where A = T'/n. Then, form a “time axis”, which is a vector
t consisting of n + 1 equally spaced entries from 0 to 7" inclusively; executing the command
“plot (t,x)” then gives the desired GWN realization. Run the code:

11



A=1; T=10; n=10000;

Delta=T/n;;

t=0:Delta:T;

white_noise=sqrt (A)*Delta”(-0.5)*randn(1,length(t));
plot(t,white_noise)

title(’Gaussian white noise realization’)

If you pass GWN through an integrator, you obtain the Brownian motion process:

:
GWN — / — X (t) = Brownian motion process
0

Even though GWN is physically unrealizable, the Brownian motion process is physically
realizable. In fact, the realizations of the Brownian motion process are continuous functions
of t. The following example allows you to use Matlab to plot realizations of a Brownian
motion process.

Example 9. In obtaining Brownian motion process from integration of GWN, you can
approximate the continuous-time integrator by a discrete-time integrator implemented by
the “cumsum” command in Matlab. Run the following script which will generate the plot of
a Brownian motion process realization:

A=1; T=10; n=10000;

Delta=T/n;

t=0:Delta:T;

x=Delta”~(-0.5)*randn(1,n);

w=[0 cumsum(Delta*x)];

plot(t,w)

title(’Brownian motion process realization’)

The factor of A in the discrete-time integrator is because

iA
/(Z_l)A x(t)dt = Ax(iA).
Although Brownian motion process realizations are continuous, they are also nowhere dif-
ferentiable! This is why your plot might look find of funny. In fact, even if you put the
realization curve under a microscope, it will still look “spiky”. (Have you heard of fractals?
Brownian motion process realizations are fractals they are not 1-D curves but rather have
a dimension somewhere between 1-D and 2-D.)

The Brownian motion process is very important for applications. For example, there is
an extension of the Brownian motion process to 2-D that can be used to solve Laplace’s
equation

O*V/0x* + 0*V/dy* = 0

in a bounded region of the xy-plane, in which a boundary condition is placed on the boundary
of the region. (To obtain V(x,y) at an interior point (z, y) of the region, you simply start the
2-D Brownian motion process there and let it run until it hits the boundary. The expected
boundary value is equal to V(z,y).)

12



EE 3025 Recitation 13 Lab Form
¢ NAME AND ID NUMBER OF TEAM MEMBER 1:

e NAME AND ID NUMBER OF TEAM MEMBER 2:
e NAME AND ID NUMBER OF TEAM MEMBER 3:

Let Z,, be a white noise process with unit variance. In this report, you find filter coefficients
A, B so that the filtering operation

X, =AZ,+BZ, , (6)
yields WSS process X, satisfying
Rx(0) =6, Rx(+1)=1, Rx(r)=0 elsewhere.
(a) The desired A, B must satisfy the equations
A+B = 6
AB =
Run the following Matlab script which finds a solution for A, B.

syms a b

[a,b] = solve(’a"2+b"2=6’ , ’a*b=1’);
A=double(a(1))

B=double(b(1))

Fill in the blanks for A, B at right (four decimal places).

(b) Using pencil and paper and high school algebra, verify that
(A+ Bz )(A+Bz)=6+z+z" (7)

Write down your work below (or on the back if you run out of room).

(c) You will learn in Chapter 11 of text that the “spectral factorization” in equation (7)
means that the filtering operation (6) will give us the desired autocorrelation function
Rx (7). Here you do a Matlab simulation to verify this. Run the script:

A = ; B = ;  henter the A,B values you found in (a)
n=1000000;

z=randn(l,n); %white noise inputs to filter

x=A*z(2:n) + B*z(1l:n-1); %filter outputs

RXO_hat mean (x."2)

RX1_hat mean(x(1:n-2) .*x(2:n-1))

Write down the autocorrelation estimates (four decimal places) yielded by Matlab:
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