
EE 3025 Dr. Kie�er7 Re
 7: Parameters rX;Y ; �X;Y ; �X;YDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Computation of rX;Y ; �X;Y for dis
rete X; Y� Estimation of rX;Y ; �X;Y ; �X;Y� Correlation Properties of a Dis
rete Channel� Correlation Re
eiver Design� Correlation Matrix and Covarian
e Matrix7.1 Exp 1: Computation of rX;Y ; �X;Y for dis
rete X; YLet X; Y be RV's taking �nitely many values. Then it is easy to 
ompute rX;Y and �X;Y viaMatlab, using the joint PMF matrix. The following example illustrates the te
hnique.Example 1. Let X; Y have the following joint PMF array:0B�Y = 1 Y = 2 Y = 3X = 0 1=6 1=6 0X = 1 0 1=6 1=6X = 2 1=6 0 1=6 1CA (1)Run the following Matlab s
ript:x=[0 1 2℄; %enter in values of Xy=[1 2 3℄; %enter in values of YM = [1/6 1/6 00 1/6 1/61/6 0 1/6℄; %enter in joint PMF matrix[X,Y℄=ndgrid(x,y);CORRELATION = sum(sum(X.*Y.*M)) 1



MEAN_X = sum(sum(X.*M))MEAN_Y = sum(sum(Y.*M))COVARIANCE = CORRELATION - MEAN_X*MEAN_YIt is not hard to evaluate rX;Y = E[XY ℄ by hand in this 
ase. Do that and 
ompare withthe �gure CORRELATION given by the above s
ript. Later, when you have time, you 
aninvestigate the wonderful Matlab 
ommand \ndgrid" in order to understand what it did inthe s
ript above. (The 
ommand \ndgrid" is similar to the 
ommand \meshgrid".)7.2 Exp 2: Estimation of rX;Y ; �X;Y ; �X;YSuppose we have a random pair (X; Y ). Suppose for some large n we observe or simulatethe values of (X; Y ) over n independent trials. We put the X observations in a ve
tor xof length n and we put the Y observations in a ve
tor y of length n. Here is how you useMatlab to estimate ea
h of the parameters rX;Y ; �X;Y ; �X;Y based on x,y:� The quantitymean(x.*y)is a good estimate of the 
orrelation rX;Y = E[XY ℄.� The quantitymean(x.*y) - mean(x)*mean(y)is a good estimate of the 
ovarian
e Cov(X; Y ) = �X;Y .� The quantity(mean(x.*y) - mean(x)*mean(y))/(std(x)*std(y))is a good estimate of the 
orrelation 
oeÆ
ient �X;Y .Example 2. Re
all the i
e 
ream experiment of Experiment 2 of Re
itation 6. (Bill eatsX i
e 
ream 
ones and then runs Y miles.) Run the following s
ript, whi
h simulates 10000observations of (X; Y ):
learfor i=1:10000N=-1;T=0;while T<1T=T-log(rand(1,1));N=N+1;endx(i)=N;y(i)=sum(rand(1,N+1)>1/2);end 2



Now obtain Matlab estimates of rX;Y ; �X;Y ; �X;Y using the ve
tors x,y. Re-run the pre
edings
ript and then re-
ompute the estimates to see if ea
h of three estimates stays about the sameas before. Now look at your 
ovarian
e estimate (estimate of �X;Y ). Based on this value, 
anyou 
on
lude whether X; Y are statisti
ally independent or statisti
ally dependent? Explain.(If you don't know the answer, ask your pro
tor.) Now look at your �X;Y estimate. Is itbetween 0 and 1 (meaning X; Y are positively 
orrelated) or is it between �1 and 0 (meaningX; Y are negatively 
orrelated). If X; Y seem to be positively 
orrelated, explain why thismakes sense. If you do not know why this makes sense, ask your pro
tor or look at page 176of your textbook.Example 3. As in Experiment 3 of Re
itation 6, we sele
t random pair (X; Y ) uniformlyfrom the region R, where R is the triangular region

-
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3 R0Run the following s
ript, whi
h simulates 10000 observations of (X; Y ):
lear;i=0;while i<10000x_temp=3*rand(1,1);y_temp=3*rand(1,1);if x_temp+y_temp<3i=i+1;x(i)=x_temp; y(i)=y_temp;elseendendNow obtain Matlab estimates of rX;Y ; �X;Y ; �X;Y using the ve
tors x,y. Re-run the pre
edings
ript and then re-
ompute the estimates to see if ea
h of three estimates stays about the sameas before. Now look at your 
ovarian
e estimate (estimate of �X;Y ). Based on this value, 
anyou 
on
lude whether X; Y are statisti
ally independent or statisti
ally dependent? Explain.(If you don't know the answer, ask your pro
tor.) Now look at your �X;Y estimate. Is itbetween 0 and 1 (meaning X; Y are positively 
orrelated) or is it between �1 and 0 (meaningX; Y are negatively 
orrelated). If X; Y seem to be negatively 
orrelated, explain why this3



makes sense. If you do not know why this makes sense, ask your pro
tor or look at page 176of your textbook.Example 4. If X; Y are independent thenrX;Y = E[XY ℄ = �X�Yand �X;Y = 0:Suppose that X; Y are independent Uniform(0,1) RV's. What should rX;Y be? Now run thefollowing s
ript and see if the results 
onform to your expe
tations:x=rand(1,50000);y=rand(1,50000);CORR_ESTIMATE = mean(x.*y)COV_ESTIMATE = mean(x.*y)-mean(x)*mean(y)Example 5. Let random pair (X; Y ) be 
hosen uniformly from the 
ir
ular regionf(x; y) : x2 + y2 < 1gAre X; Y independent? Why or why not? What do you think the three parametersrX;Y ; �X;Y ; �X;Y will be in this 
ase? Run the following s
ript to obtain the estimates ofthese parameters:
lear;i=0;while i<10000x_temp=2*rand(1,1)-1;y_temp=2*rand(1,1)-1;if x_temp^2+y_temp^2<1i=i+1;x(i)=x_temp; y(i)=y_temp;elseendendCORR_ESTIMATE = mean(x.*y)COV_ESTIMATE = mean(x.*y)-mean(x)*mean(y)RHO_ESTIMATE = ( mean(x.*y)-mean(x)*mean(y))/(std(x)*std(y))What did you learn from this Example? If you have dependent RV's, 
an you say anythingin advan
e about what the values of rX;Y ; �X;Y ; �X;Y might be?7.3 Exp 3: Correlation Properties of a Dis
rete ChannelIn 
lass, I examined 
orrelation properties of a 
hannel 
alled the binary symmetri
 
hannel(BSC). The example whi
h follows will show you that some of the 
orrelation properties weexhibited for the BSC will also hold for other dis
rete 
hannels.4



Example 6. We examine a dis
rete 
hannel with input and output alphabet f0; 1; 2g and
hannel matrix 264 1� p p=2 p=2p=2 1� p p=2p=2 p=2 1� p 375where p is a parameter between 0 and 1 (the probability the 
hannel makes a transmissionerror). The \line diagram" of this 
hannel is as follows:
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Let X be a random input RV to this 
hannel (assumed equiprobable), and let Y be the
orresponding output RV. The 
orrelation 
oeÆ
ient � = �X;Y of X and Y is given by:� = E[(X � �X)(Y � �Y )℄�X�YThe 
orrelation 
oeÆ
ient � will be a fun
tion of the 
rossover probability p. In this Example,we will:� Use Matlab to to obtain an estimated plot of � versus p.� Examine the plot for 
ertain � values to see what this tells us about the relationshipbetween X and Y .We will be using the following Matlab 
ode to simulate a sequen
e x of equiprobable inputsand the 
orresponding sequen
e y of outputs from the 
hannel in response to these inputs:x=floor(3*rand(1,10000));u=(rand(1,10000)<p);y=rem(x+
eil(2*rand(1,10000)).*u,3);Run the following program, whi
h estimates the 
orrelation 
oeÆ
ient � for 
hannel inputand output as a fun
tion of p: 5



p=0:.01:1;for i=1:length(p)q=p(i);x=floor(3*rand(1,10000));u=(rand(1,10000)<q);y=rem(x+
eil(2*rand(1,10000)).*u,3);rho(i)=mean((x-mean(x)).*(y-mean(y)))/(std(x)*std(y));endplot(p,rho)xlabel('error probability p')ylabel('
orrelation 
oeffi
ient')You should see a plot on your 
omputer s
reen that looks something like this:
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Things to Noti
e.� One 
an show that � is the following straight line fun
tion of p:� = (�3=2)p+ 1: (2)Does the \wiggly" straight line plot you see on your 
omputer s
reen seem to be agood approximation to the straight line (2)? (Compare where the two straight linesstart and end and 
ompare the two slopes.)� Noti
e that all the � values you see on your s
reen are between �1 and 1. Thisillustrates the following property of 
orrelation 
oeÆ
ient:�1 � �X;Y � 1:6



� Look at the plot in order to see what value of p yields a � value of 0. From the plot,this appears to o

ur at about p = 2=3. (Plugging, � = 0 into equation (2) and solvingfor p, you get exa
tly p = 2=3.) Plugging p = 2=3 into the 
hannel matrix, you obtain1/3 1/3 1/31/3 1/3 1/31/3 1/3 1/3Noti
e that all 3 rows of the 
hannel matrix are the same. Whenever you have a 
hannelfor whi
h all of the rows of the 
hannel matrix are identi
al, then 
hannel input X and
hannel output Y will always be statisti
ally independent (do you understand why?).A property of �X;Y states that if X; Y are independent, then �X;Y will automati
allybe equal to zero. We have just seen this property to be true in this spe
ial 
ase.� Noti
e from the plot that when � = 1, we have p = 0 and therefore the 
hannel matrixis1 0 00 1 00 0 1In other words, the random pair (X; Y ) always satis�es X = Y . That is, when weperform our experiment of running an input through the 
hannel, the (input,output)pair will always fall on the straight line y = x in the xy-plane. A property of �X;Y saysthat if �X;Y = 1, then there must be a straight line y = ax + b with positive slope asu
h that the observed value of (X; Y ) will fall on the straight line y = ax + b withprobability equal to 1. We have just seen this property to be true in this spe
ial 
ase.To summarize, we have illustrated the following three properties of �X;Y :Property 1: �1 � �X;Y � 1Property 2: If X; Y are statisti
ally independent, then �X;Y = 0.Property 3: If �X;Y = 1, then there is a straight line relationship between X and Y inwhi
h the straight line has positive slope.There is also the following property whi
h did not show up in our experiment:Property 4: If �X;Y = �1, then there is a straight line relationship between X and Y inwhi
h the straight line has negative slope.(This property did not show up in our experiment be
ause we did not obtain any � valuesmaller than �1=2.)
7



7.4 Exp 4: Correlation Re
eiver DesignConsider the blo
k diagramX ! 
hannel ! Y ! 
orrelationre
eiver ! X̂ = CYAs indi
ated, the output of the so-
alled \
orrelation re
eiver" is an estimate of 
hannelinput X of the form X̂ = CY;a 
onstant C times the 
hannel output Y . The 
onstant C is 
hosen so that the mean-squareestimation error E[(X � X̂)2℄ = E[(X � CY )2℄ (3)is minimized. We will prove in 
lass that the solution for C isC = E[XY ℄E[Y 2℄ : (4)Be
ause of the presen
e of the 
orrelation E[XY ℄ in the pre
eding expression for C, you nowsee why the re
eiver is 
alled the \
orrelation" re
eiver.In this experiment, we are going to simulate a large number of inputs and outputs to a
hannel. Letting x be the ve
tor of simulated 
hannel inputs and letting y be the ve
tor ofsimulated 
hannel outputs, we are then going to plotmean((x-Cy).^2)as a fun
tion of C, whi
h is an estimate of the mean-square estimation error (3). In this way,we will be able to verify that the formula (4) is approximately 
orre
t by seeing for what Cvalue our plot rea
hes a minimum.The 
hannel we will be using is a \Gaussian additive noise 
hannel":

input  X

noise  Z

output  Y = X+Z

The \
hannel noise" Z is a Gaussian RV whi
h is independent of the input X.Here is how the simulation of this 
hannel will take pla
e:8



� The 
hannel inputs will be simulated asx=randn(1,100000);In other words, we are taking the 
hannel input RV X to be a standard Gaussian RV.� The Gaussian 
hannel noise samples will be simulated asz=2*randn(1,100000);In other words, we are taking the 
hannel noise RV Z to be Gaussian with mean 0 andvarian
e 4.� Clearly, the 
hannel outputs will be simulated asy=x+z;Example 7. Run the following Matlab s
ript, whi
h estimates the 
onstant C to be usedin the 
orrelation re
eiver:x=randn(1,100000);z=2*randn(1,100000);y=x+z;C_estimate = mean(x.*y)/mean(y.^2)Now 
ompute the exa
t value of C a

ording to formula (4):C = E[X(X + Z)℄E[(X + Z)2℄ = E[X2℄ + E[X℄E[Z℄E[X2℄ + 2E[X℄E[Z℄ + E[Z2℄ :Plug in E[X2℄ = 1E[X℄ = 0E[Z2℄ = 4Is your estimate for C pretty good? Store the exa
t value of C you just found for use in thenext example.Example 8. Run the following Matlab s
ript, whi
h will give you a plot of the estimatedmean-square estimation error (3) as a fun
tion of C:
learx=randn(1,100000);z=2*randn(1,100000);y=x+z;C=0:.01:.5;for i=1:length(C);esterror(i)=mean((x-C(i)*y).^2);endplot(C,esterror)Eyeball the plot. Does its minimum point seem to 
oin
ide with the value of C you foundin Example 7? 9



7.5 Exp 5: Correlation Matrix and Covarian
e MatrixThe purpose of this experiment is to introdu
e you to the 
on
epts of 
orrelation matrix and
ovarian
e matrix. I will use these 
on
epts starting in next week's re
itation to do someinteresting things, some of whi
h having to do with design.Let X; Y be random variables. The 
orrelation matrix of these RV's is de�ned to be the2� 2 matrix " E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ #Noti
e that the two diagonal elements are the se
ond moments of the individual RV's,whereas the two o� diagonal elements are both equal to the 
orrelation rX;Y = E[XY ℄.On the other hand, the 2� 2 matrix" �2X �X;Y�X;Y �2Y # ;where �X;Y = Cov[X; Y ℄, is 
alled the 
ovarian
e matrix of the two RV's. Depending uponthe appli
ation, it might be more 
onvenient to deal with the 
orrelation matrix than the
ovarian
e matrix, or vi
e-versa. You 
an go from either matrix to the other one by exploitingthe equation: " �2X �X;Y�X;Y �2Y # = " E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ #� " �2X �X�Y�X�Y �2Y # :The last term 
an be written more 
ompa
tly as" �2X �X�Y�X�Y �2Y # = " �X�Y # h �X �Y i :If RV's X; Y are statisti
ally independent, then the 
ovarian
e matrix is a diagonal ma-trix: " �2X �X;Y�X;Y �2Y # = " �2X 00 �2Y # ; (5)and the 
orrelation matrix redu
es to" E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ # = " E[X2℄ �X�Y�X�Y E[Y 2℄ # : (6)In this experiment, you will see how to estimate the 
orrelation matrix and the 
ovarian
ematrix from data points (xi; yi), and you will also verify the spe
ial forms of these matri
esin the independent 
ase.Example 9: You estimate the 
orrelation matrix and the 
ovarian
e matrix from 50000data points (xi; yi).Step 1: Run the s
ript: 10




learu=rand(1,50000); v=rand(1,50000);x=3*u+v; y=-u+2*v;You have generated 50000 observations of a random pair (X; Y ), de�ned byX = 3U + V (7)Y = �U + 2V (8)where U; V are independent Uniform[0,1℄ RV's. That is, the i-th entry xi of ve
tor xand the i-th entry yi of ve
tor y yield the point (xi; yi), whi
h is the i-th observationof (X; Y ).Step 2: Here is a Matlab one-liner estimating the 
orrelation matrix of X; Y from the 50000data points:CORRMATRIX = [x;y℄*[x;y℄'/50000Step 3: Here is a one-liner estimating the 
ovarian
e matrix of X; Y from the 50000 datapoints:COVMATRIX = [x-mean(x);y-mean(y)℄*[x-mean(x);y-mean(y)℄'/50000Step 4: Compute the pre
ise values of �X and �Y from the equations (7),(8). Then run thefollowing s
ript:mX =0 %enter in here the mean of XmY =0 %enter in here the mean of Y[mX mY℄'*[mX mY℄CORRMATRIX - COVMATRIXYou will see two 2 � 2 matri
es on your s
reen. Do you understand why they areabout the same? In next week's re
itation, you will see how to 
ompute the a
tual
orrelation matrix and the a
tual 
ovarian
e matrix. Then, you will be able to returnto this example to see if the estimated matri
es CORRMATRIX and COVMATRIXmake sense.Step 5: Using the matrix COVMATRIX, generate an estimate for �X;Y .Example 10: In this example, you simulate observations (xi; yi) of a random pair (X; Y )in whi
h X; Y are independent. You then examine the spe
ial form of the 
ovarian
e matrixestimate and the 
orrelation matrix estimate.Step 1: Run the s
riptx=-log(rand(1,50000));y=-log(rand(1,50000)); 11



You are simulating values of (X; Y ), where X; Y are independent exponentially dis-tributed RV's ea
h having mean 1.Step 2: Generate estimated 
ovarian
e and 
orrelation matri
es by running the s
ript:COVMATRIX = [x-mean(x);y-mean(y)℄*[x-mean(x);y-mean(y)℄'/50000CORRMATRIX = [x;y℄*[x;y℄'/50000See if your estimated 
ovarian
e matrix is approximately equal to expression (5) andsee if your estimated 
orrelation matrix is approximately equal to expression (6). (Sin
eyou know X and Y ea
h have mean and varian
e 1, you will be able to 
ompute these
ond moments of these two RV's.) To make your results even more 
onvin
ing, runthe linesround(COVMATRIX)round(CORRMATRIX)
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EE 3025 S2005 Re
itation 7 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 4 
arefully, at least up through Example 7. I will ask a question 
on
erning
orrelation re
eiver design.
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