
EE 3025 Dr. Kie�er8 Re
 8: Mis
ellaneous End of Chapter 4 Topi
sDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s. This week's re
itation gives you insight into the remaining topi
sfrom Chapter 4. Sin
e these remaining topi
s are not all that related to one another, thisweek's re
itation may seem like somewhat of a \potpourri". Here are the topi
s to be 
overed:� Correlation Matri
es of Linearly Transformed RV's� Whitening Filter Design� Conditional PDF's of Joint Gaussian Density� Expe
ted Lifetime of Relay Cir
uits8.1 Exp 1: Correlation Matri
es of Linearly Transformed RV'sIn Experiment 5 of Re
itation 7, the 
on
epts of 
orrelation matrix and 
ovarian
e matrixof a set of RV's were introdu
ed. Suppose we now linearly transform a set of RV's toobtain a new set of RV's. This experiment shows you how to obtain the 
orrelation matrixand 
ovarian
e matrix of the new set of RV's from the original 
orrelation and 
ovarian
ematri
es.Let X1; X2 be given RV's and let Y1; Y2 be RV's obtained from X1; X2 via a linear trans-formation. We 
an express the relationship between Y1; Y2 and X1; X2 using matri
es:" Y1Y2 # = " a1 a2a3 a4 # " X1X2 # (1)How 
an the 
orrelation E[Y1Y2℄ between Y1; Y2 be 
omputed from the 
orrelation E[X1X2℄between X1; X2? Here is a matrix method for doing this:� Let A be the 2� 2 
oeÆ
ient matrix in (1):A = " a1 a2a3 a4 # :1



Then " E[Y 21 ℄ E[Y1Y2℄E[Y1Y2℄ E[Y 22 ℄ # = A " E[X21 ℄ E[X1X2℄E[X1X2℄ E[X22 ℄ #AT (2)� Example 1. Let (X1; X2) be independent standard Gaussian random variables. Let(Y1; Y2) be the jointly Gaussian random variables obtained as follows:Y1 = 5X1 + 3X2Y2 = 4X1 � 2X2Use Matlab to 
ompute the 
orrelation E[Y1Y2℄ by taking a produ
t of three 2 � 2matri
es a

ording to equation (2) (the middle one of whi
h is the 2 � 2 identitymatrix) and then pi
king o� the desired 
orrelation as a 
ertain element of the 2 � 2produ
t matrix.� Example 2. Now let X1; X2 be independent RV's ea
h uniformly distributed between0 and 1. Use the same linear transformation as in Example 1 to obtain 
orrelatedRV's Y1; Y2. Use Matlab to 
ompute the 
orrelation E[Y1Y2℄ by taking a produ
t ofthree 2 � 2 matri
es a

ording to equation (2). Be 
areful: The middle matrix in(2) is no longer the identity matrix|the two diagonal elements are ea
h equal to these
ond moment of the uniform[0; 1℄ distribution, whi
h is 1=3, and the two o� diagonalelements are both 1=4 (why?).We 
an easily extend these ideas to linear transformations of three or more RV's. If we have264 Y1Y2Y3 375 = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 264 X1X2X3 375then 264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375 = A 264 E[X21 ℄ E[X1X2℄ E[X1X3℄E[X1X2℄ E[X22 ℄ E[X2X3℄E[X1X3℄ E[X2X3℄ E[X23 ℄ 375AT (3)where the matrix A is now the following 3� 3 
oeÆ
ient matrix:A = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 :� Example 3. Let X1; X2; X3 be independent standard Gaussian random variables andlet Y1; Y2; Y3 be the random variables:Y1 = 4X1 � 9X2 + 5X3Y2 = �2X1 + 3X2 + 7X3Y3 = 3X1 � 5X2 +X3Use Matlab to 
ompute the three 
orrelations E[Y1Y2℄, E[Y1Y3℄, E[Y2Y3℄ by taking aprodu
t of three 3 � 3 matri
es a

ording to equation (3) (the middle one of whi
his the 3 � 3 identity matrix) and then pi
king o� the desired 
orrelations as 
ertainelements of the 3� 3 produ
t matrix. 2



� Example 4. Now let X1; X2; X3 be independent RV's ea
h uniformly distributed be-tween 0 and 1. Use the same linear transformation as in previous Example 3 to obtain
orrelated RV's Y1; Y2; Y3. Use Matlab to 
ompute the three 
orrelations E[Y1Y2℄,E[Y1Y3℄, E[Y2Y3℄ by taking a produ
t of three 3�3 matri
es a

ording to equation (3).Be 
areful: The middle matrix in (3) is no longer the identity matrix.Now suppose we introdu
e a bias term [b1 b2℄T in (1):" Y1Y2 # = " a1 a2a3 a4 # " X1X2 # + " b1b2 #The means of the new RV's are related to the means of the old RV's in the same way:" �Y1�Y2 # = " a1 a2a3 a4 # " �X1�X2 #+ " b1b2 #The 
ovarian
e and varian
e of the new RV's are related to the 
ovarian
e and varian
e ofthe old random variables as follows:" �2Y1 �Y1Y2�Y1Y2 �2Y2 # = A " �2X1 �X1X2�X1X2 �2X2 #ATNoti
e that the bias term did not a�e
t these 
ovarian
e and varian
e 
omputations at all(you get the same answers taking the bias term [b1 b2℄T to be zero).� Example 5. Let U; V be independent standard Gaussian RV's. Let X; Y be the depen-dent Gaussian RV's de�ned by X = 5U + 3V � 7Y = 4U � 2V + 3Do the following Matlab 
omputations to 
ompute �X ; �Y ; �X ; �Y ; �X;Y . First, 
omputethe means �X ; �Y by exe
uting the following Matlab 
ode:mu_U=0;mu_V=0;A = [5 34 -2℄;b = [-7 3℄;newmean = A*[mu_U mu_V℄' + b';mu_X = newmean(1)mu_Y = newmean(2)Now we use the equation" �2X �XY�XY �2Y # = A " �2U �UV�UV �2V #AT (4)to 
ompute �X ; �Y ; �X;Y by exe
uting: 3



C = A*A';sigma_X = sqrt(C(1,1))sigma_Y = sqrt(C(2,2))rho_XY = C(1,2)/(sigma_X*sigma_Y)(We used the fa
t that the middle matrix in the triple produ
t on right side of (4) isthe 2� 2 identity matrix.)� Example 6. Rework Example 5 now assuming that U; V are independent uniform[0; 1℄RV's. Compute �X ; �Y ; �X ; �Y ; �X;Y via Matlab. (Note: The middle term on the rightside of equation (4) is no longer an identity matrix, but it is a diagonal matrix|whatis it?)We 
on
lude by extending these ideas to linear transformations of three RV's with a biasterm: 264 Y1Y2Y3 375 = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 264 X1X2X3 375+ 264 b1b2b3 375The new 
ovarian
es are expressible in terms of the old 
ovarian
es via the matrix equation:264 �2Y1 �Y1Y2 �Y1Y3�Y1Y2 �2Y2 �Y2Y3�Y1Y3 �Y2Y3 �2Y3 375 = A 264 �2X1 �X1X2 �X1X3�X1X2 �2X2 �X2X3�X1X3 �X2X3 �2X3 375AT (5)where the matrix A is now the following 3� 3 
oeÆ
ient matrix:A = 264 a1 a2 a3a4 a5 a6a7 a8 a9 375 :The bias term does not a�e
t the 
ovarian
e 
omputations, but it does a�e
t the 
omputa-tions of the 
orrelations E[YiYj℄. The simplest way to 
ompute the 
orrelations would be to�rst 
ompute the 
ovarian
es and then to 
ompute the 
orrelations from the 
ovarian
es, asfollows: 264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375 = 264 �2Y1 �Y1Y2 �Y1Y3�Y1Y2 �2Y2 �Y2Y3�Y1Y3 �Y2Y3 �2Y3 375 +M �MT ; (6)where M is the 
olumn ve
tor of means 
omputable asM = 264 �Y1�Y2�Y3 375 = A � 264 �X1�X2�X3 375 + 264 b1b2b3 375
4



� Example 7. Let X1; X2; X3 be independent uniform[0; 1℄ random variables and letY1; Y2; Y3 be the random variables:Y1 = 4X1 � 9X2 + 5X3 � 2Y2 = �2X1 + 3X2 + 7X3 + 4Y3 = 3X1 � 5X2 +X3 + 3Use Matlab to �nd the 
orrelation matrix264 E[Y 21 ℄ E[Y1Y2℄ E[Y1Y3℄E[Y1Y2℄ E[Y 22 ℄ E[Y2Y3℄E[Y1Y3℄ E[Y2Y3℄ E[Y 23 ℄ 375a

ording to the method just dis
ussed (i.e., �nd the 
ovarian
e matrix using (5) andthen �nd the 
orrelation matrix using (6)).8.2 Exp 2: Whitening Filter DesignIn this experiment, you are going to design a type of whitening �lter. Here is a blo
k diagramillustrating what you will be attempting to do:
whitening filter

xu

v y

As inputs to the whitening �lter, you will be given two data streams u, v, ea
h 
onsisting of50000 samples. The outputs from the whitening �lter are to be two data streams x, y, alsoea
h 
onsisting of 50000 samples. The inputs and outputs are related by the equationsx = a*u+b*v;y = 
*u+d*v;where the 4 real parameters a; b; 
; d (7)are 
alled the whitening �lter 
oeÆ
ients. In this experiment, you will be designing thewhitening �lter 
oeÆ
ients so that the two output streams will be orthogonal, that is, sothatmean(x.*y)=0 5



There are several approa
hes via whi
h the whitening �lter 
oeÆ
ients (7) 
an be designed.The approa
h we show you here uses the eigende
ompositon of the 2� 2 
orrelation matrixof the data ve
tors u,v (whi
h is obtained with the Matlab fun
tion eig). We will ultimatelypresent some theory in one of the le
tures justifying this approa
h; however, you do not needto understand the theory in order to perform the method. You just follow the followingsteps.Step 1: Run the following lines of Matlab 
ode:M=randn(2,50000);u=sum(abs(M)); v=sqrt(sum(M.^2));This will store the streams u, v, that you will be using in Matlab memory.Step 2: Compute the 2 � 2 
orrelation matrix of the data streams u, v, by running thefollowing single line of Matlab 
ode:CORRMATRIX = [u;v℄*[u;v℄'/50000It is fun to see what the elements of this \sample" 
orrelation matrix are estimating.Let S; T be independent standard Gaussian RV's. Let U; V be the RV'sU = jSj+ jT jV = pS2 + T 2Then the entries of ve
tor u 
an be regarded as samples of RV U and the entries ofve
tor v 
an be regarded as samples of RV V . It follows that the sample 
orrelationmatrix \CORRMATRIX" is estimating the \theoreti
al 
orrelation matrix"" E[U2℄ E[UV ℄E[UV ℄ E[V 2℄ #Matlab 
an help you �nd this theoreti
al 
orrelation matrix. For example,E[U2℄ = E[(jSj+jT j)2℄ = E[S2℄+E[T 2℄+2E[jSj℄E[jT j℄ = 2+2 2p2� Z 10 s exp(�s2=2)ds!2 :You 
an now use the Matlab fun
tion \int" as an aid in evaluating E[U2℄. What doyou get? Similarly, E[V 2℄ = E[S2 + T 2℄ = 2:You should now 
he
k whether the theoreti
al values of the se
ond moments E[U2℄and E[V 2℄ 
orrespond to the diagonal entries of CORRMATRIX. One 
an also 
omputethe 
orrelation E[UV ℄ in terms of S and T asE[UV ℄ = E[(jSj+ jT j)pS2 + T 2℄:The right hand side 
an be evaluated by a 
onversion to polar 
oordinates. Yourinstru
tor might show you some of this 
omputation on the board.6



Step 3: Compute the following 2� 2 matrix A by running the line of 
ode:[A,B℄ = eig(CORRMATRIX); AThe 
olumns of the matrix A are linearly independent eigenve
tors of CORRMATRIX.Let the whitening �lter parameters a; b; 
; d be sele
ted as follows:A = " a 
b d # :Step 4: In this step, you pass the data ve
tors u, v through the whitening �lter and 
he
kwhether the �lter has whitened the data:x = a*u+b*vy = 
*u+d*v;mean(x.*y)Did you get the 
orrelation �guremean(x.*y)to be zero?Step 5: This step will give you some additional insight into why the whitening �lter worked.You 
an regard the �lter output ve
tors x and y as samples of RV's X and Y , respe
-tively, where X; Y are obtained as linear 
ombinations of U; V whi
h we 
an write inthe following matrix format: " XY # = AT � " UV #As a 
onsequen
e of this transformation, you 
an use what you learned in Experiment1 to 
on
lude that" E[X2℄ E[XY ℄E[XY ℄ E[Y 2℄ # = AT � " E[U2℄ E[UV ℄E[UV ℄ E[V 2℄ # � A: (8)It is interesting to see what the 2 � 2 matrix on the left turns out to be. You 
anobtain some insight into this using Matlab as follows: Do the following matrix tripleprodu
t via MatlabA'*CORRMATRIX*ADo you obtain a diagonal matrix? Interpret what this means in terms of the left sideof equation (8). Does it now make more sense why the x data and the y data have 0
orrelation? If you are totally 
onfused at this point, your instru
tor 
an try to providemore explanation. 7



8.3 Exp 3: Conditional PDF's of Joint Gaussian DensityIn Experiment 5 of Re
itation 6, we introdu
ed you to the joint Gaussian density surfa
ez = f(x; y), where f(x; y) is the joint Gaussian density fun
tion. Again, take f(x; y) of theform f(x; y) = 12�p1� �2 exp �x2 � 2�xy + y22(1� �2) ! ; (9)meaning that we have a joint Gaussian pair of RV's (X; Y ) with means �X and �Y equalto zero, standard deviations �X and �Y equal to one, and 
orrelation 
oeÆ
ient � stri
tlybetween -1 and 1. In this experiment, we show you how verti
al 
ross-se
tions of the Gaussiandensity surfa
e are related to 
onditional PDF's of the joint Gaussian RV's X; Y . To obtaina verti
al 
ross-se
tion, we will 
ut through the density surfa
e with planes perpendi
ular tothe xy-plane. There are two types of verti
al 
ross-se
tions:� Cut through the surfa
e with a plane of form x = C, where C is a 
onstant. Up to as
aling fa
tor, this will yield the 
onditional density fY jX(yjx = C) of Y given X = C,whi
h is a Gaussian density.� Cut through the surfa
e with a plane of form y = C, where C is a 
onstant. Up to as
aling fa
tor, this will yield the 
onditional density fXjY (xjy = C) of X given Y = C,a Gaussian density.Example 8. Throughout this example, we assume (X; Y ) to have 
orrelation 
oeÆ
ient� = 1=2. Using the Matlab s
ript in Experiment 5 of Re
itation 6, you 
an easily obtain thesurfa
e plot z = f(x; y), whi
h is given by the following �gure:
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The 
ontours that you see on the surfa
e are the 
ross-se
tions of the density surfa
e thatyou obtain with planes of the form x = C and y = C, where C is a 
onstant.8



� We run the following 
ode, whi
h generates the plot of one of these 
ontours:x=-4:.2:4;y=-4:.2:4;[X,Y℄=meshgrid(x,y);rho=1/2;Z=1/(2*pi*sqrt(1-rho^2))*exp(-(X.^2-2*rho*X.*Y + Y.^2)/(2*(1-rho^2)));z1=Z(:,15);plot(y,z1);Your plot should look like this:
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� Noti
e that the plot has the shape of a Gaussian density 
urve. Let's investigatefurther. In going down 
olumns of Z, you are �xing the x 
oordinate and letting they 
oordinate vary. For example, if there are 4 values x1; x2; x3; x4 in ve
tor x and 4values y1; y2; y3; y4 in ve
tor y, then the matrix Z would take the formZ = 26664 f(x1; y1) f(x2; y1) f(x3; y1) f(x4; y1)f(x1; y2) f(x2; y2) f(x3; y2) f(x4; y2)f(x1; y3) f(x2; y3) f(x3; y3) f(x4; y3)f(x1; y4) f(x2; y4) f(x3; y4) f(x4; y4) 377759



Sin
e z1 
omes from the 15-th 
olumn of Z, and sin
e the 15-th value of x is �1:2,the 
ross-se
tional plot we've just seen, properly s
aled, is the 
onditional density ofY given X = �1:2: From your textbook, the 
onditional mean for Y given X = x is
omputable via the formulaE[Y jX = x℄ = �Y + ��Y�X (x� �X):Plugging in �Y = �X = 0, � = 1=2, �X = �Y = 1, and x = �1:2, one obtainsE[Y jX = x℄ = �0:6:This is about where the plot is 
entered. The 
onditional standard deviation is�yjx = q1� �2�Y = p3=2:The peak value of the 
onditional density 
urve fY jX(yjx = �1:2) should therefore be1p2��yjx = 0:4607:So, you would have to s
ale the 
ross-se
tional plot by a fa
tor of0:4287M ;where M is the peak value of the 
ross-se
tional plot (about 0:09).� The following s
ript evaluates M and the s
aling fa
tor that is required:X=-1.2; Y=-0.6; rho=1/2;M=1/(2*pi*sqrt(1-rho^2))*exp(-(X.^2-2*rho*X.*Y + Y.^2)/(2*(1-rho^2)))M = 0.0895s
aling_fa
tor=1/(M*sqrt(2*pi)*sqrt(0.75))s
aling_fa
tor =5.1497So, just s
ale our earlier 
urve by a fa
tor of 5.1497. This will give a genuine Gaussiandensity 
urve (one for whi
h the area underneath is equal to one). It will be the desired
onditional density.
10



8.4 Exp 4: Expe
ted Lifetime of Relay Cir
uitsThe lifetime of a type 1 relay swit
h is exponentially distributed and the expe
ted lifetime is500 hours. The lifetime of a type 2 relay swit
h is exponentially distributed and the expe
tedlifetime is 300 hours.Example 9. A type 1 swit
h and a type 2 swit
h are pla
ed in parallel to form a relay
ir
uit:
1

2

A B

Run the following Matlab s
ript, whi
h estimates the expe
ted lifetime of the relay 
ir
uit.t1=-500*log(rand(1,50000));t2=-300*log(rand(1,50000));t=max([t1;t2℄);mean(t)Do you understand what ea
h line of 
ode is doing?Example 10. We show you in this example a really 
ool way to obtain the exa
t expe
tedlifetime for the parallel 
ir
uit of the pre
eding example. If the swit
hes are 
losed withrespe
tive probabilities p1; p2, then we know from Chapter 1 that the overall 
ir
uit willwork with probability 1� (1� p1)(1� p2)In this expression, plug in p1 = exp(�a1t); p2 = exp(�a2t);where a1 = 1=500; a2 = 1=300:This gives a fun
tion we will 
all R(t):R(t) = 1� (1� e�a1t)(1� e�a2t):Now we do the following integral Z 10 R(t)dt:Perform this integration by running the following Matlab s
ript:11




leara1=1/500;a2=1/300;syms tp1=exp(-a1*t);p2=exp(-a2*t);I=int((1-(1-p1)*(1-p2)),0,inf);double(I)Compare the result with the estimated expe
ted 
ir
uit lifetime found from Example 9. Areyou surprised?Example 11. A type 1 swit
h and a type 2 swit
h are pla
ed in series to form a relay
ir
uit:
1 2A B

Run the following Matlab s
ript, whi
h estimates the expe
ted lifetime of the relay 
ir
uit.t1=-500*log(rand(1,50000));t2=-300*log(rand(1,50000));t=min([t1;t2℄);mean(t)Do you understand what ea
h line of 
ode is doing?Example 12. Let us see if the 
ool tri
k of Example 10 will also work for the series 
ir
uitabove. If the swit
hes are 
losed with respe
tive probabilities p1; p2, then we know fromChapter 1 that the overall 
ir
uit will work with probabilityp1p2In this expression, plug in p1 = exp(�a1t); p2 = exp(�a2t);where a1 = 1=500; a2 = 1=300:This gives a fun
tion we will 
all R(t):R(t) = (e�a1t)(e�a2t):Now we do the following integral Z 10 R(t)dt:Perform this integration by running the following Matlab s
ript:12




leara1=1/500;a2=1/300;syms tp1=exp(-a1*t);p2=exp(-a2*t);I=int(p1*p2,0,inf);double(I)Compare the result just obtained with the estimated lifetime from Example 11. Are yousurprised?Example 13. A relay 
ir
uit is formed from 3 swit
hes in parallel. Two of the swit
hesare type 1 and the remaining one is type 2. Using Example 9 as a guide, run a Matlab s
riptto estimate the expe
ted lifetime of the relay 
ir
uit. Using Example 10 as a guide, run aMatlab s
ript whi
h will give the EXACT expe
ted lifetime of the relay 
ir
uit.Example 14. A relay 
ir
uit is formed from 3 swit
hes in series. Two of the swit
hes aretype 2 and the remaining one is type 1. Using Example 11 as a guide, run a Matlab s
riptto estimate the expe
ted lifetime of the relay 
ir
uit. Using Example 12 as a guide, run aMatlab s
ript whi
h will give the EXACT expe
ted lifetime of the relay 
ir
uit.
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EE 3025 S2007 Re
itation 8 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 4 
arefully. I will ask a question 
on
erning estimating the expe
ted life-time of a relay 
ir
uit.
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