
EE 3025 Dr. Kie�er9 Re
 9: Limit Theorems/Con�den
e IntervalsDire
tions: Your instru
tor will spend the the �rst 40 minutes of the re
itation periodworking some review problems and going over one or more Matlab experiments in the fol-lowing. During the last 10 minutes of re
itation, your pro
tor will give you a \Lab Form"that your re
itation team 
ompletes, signs, and turns in. See the last page for an indi
ationof what you will be asked to do on the Lab Form.Due to time limitations, only a part of the following 
an be 
overed during the re
itationperiod. However, you might want in the future to try some of the un
overed experiments onyour own. They 
ould give skills useful on some future homework problems and 
ould lendinsight into your understanding of the 
ourse from an experimental point of view.This Week's Topi
s.� Sums of Independent RV's and Convolution� Central Limit Theorem (CLT) for a Continuous Sampling Distribution� CLT for a Dis
rete Sampling Distribution� Con�den
e Intervals� Varian
e of Sum of Dependent RV's9.1 Exp 1: Sums of Independent RV's and ConvolutionLet X1 and X2 be independent dis
rete RV's, and letX = X1 +X2be the sum. Then pX(x) = pX1(x) � pX2(x); (1)where we are taking 
onvolution in the usual EE 3015 sense. I will eventually prove thisresult in the 
lass le
ture notes. In this experiment, you will verify formula (1) using Matlab.In Matlab, 
onvolution is performed using the fun
tion \
onv".Example 1. In this example, you let RV's X1 and X2 be the numbers whi
h 
ome up in
ipping a fair die two times. We know from earlier in the 
ourse that the RVX = X1 +X2;whi
h is the total of the numbers on the two die 
ips, has a PMF distributed over the setf2; 3; 4; 5; 6; 7; 8; 9; 10; 11; 12ga

ording to 
ertain probabilities. First, run the following Matlab s
ript, whi
h generates ahistogram approximation of this PMF based upon 10000 simulated observations of X:1



x1=
eil(6*rand(1,10000));x2=
eil(6*rand(1,10000));x=x1+x2;subplot(2,1,1)bar(2:12,hist(x,2:12)/10000)Now run the following Matlab s
ript, whi
h gives the exa
t plot of the PMF of X using
onvolution:PMF1=[1/6 1/6 1/6 1/6 1/6 1/6℄;PMF2=[1/6 1/6 1/6 1/6 1/6 1/6℄;PMFX=
onv(PMF1,PMF2);subplot(2,1,2)bar(2:12,PMFX)Compare the two plots you see on your 
omputer s
reen. Are the two plots about the same?9.2 Exp 2: CLT for a Continuous Sampling DistributionSuppose you have a probability distribution governed by a density f(x). Let n be a largepositive integer. Independently sele
t n random samples X1; X2; : : : ; Xn a

ording to thisdistribution. Let � and �2 be the mean and varian
e of the density f(x), given by� = Z 1�1 xf(x)dx�2 = Z 1�1(x� �)2f(x)dxAssume that the following assumptions hold:�1 < � <1; 0 < �2 <1:The 
entral limit theorem (CLT) says that the random variableZ = (X1 +X2 + : : :+Xn)� n��pn (2)is approximately distributed a

ording to the standard Gaussian distribution, meaning thatP (a � Z � b) � Z ba 1p2� exp(�z2=2)dx:The approximation be
omes better as n gets bigger. (In the limit as n ! 1, the approxi-mation be
omes exa
t.)This is an amazing result if you 
onsider the fa
t that this approximate Gaussian behaviorwill o

ur regardless of what the density f(x) is.In this experiment, we use Matlab to 
onvin
e you of the truth of the CLT when thedistribution we sample from is a 
ontinuous distribution.2



Example 2. We take samples from an exponential distribution with mean � = 1 andvarian
e �2 = 1. Run the following Matlab s
ript, whi
h estimates the PDF of(X1 +X2)� 2��p2 ;where X1; X2 are two random samples from our exponential distribution.n=2;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,1)bar(t,PDFestimate)Your estimated PDF plot looks kind of skewed, doesn't it? (Not very Gaussian bell-shapedat all!) Now run the following s
ript, whi
h estimates the PDF of(X1 +X2 + � � �+X8)� 8��p8 ;where we have now taken 8 independent samples X1; X2; � � � ; X8 from our exponential dis-tribution.n=8;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,2)bar(t,PDFestimate)Does your estimated PDF plot look more like a Gaussian bell-shaped 
urve? Now run thefollowing s
ript, whi
h estimates the PDF of(X1 +X2 + � � �+X32)� 32��p32 ;where we have now taken 32 independent samples X1; X2; � � � ; X32 from our exponentialdistribution. 3



n=32;x=sum(-log(rand(n,100000)));z=(x-mean(x))/std(x);N=1000;A=min(z);B=max(z);Delta=(B-A)/N;t=A-Delta/2+[1:N℄*Delta;PDFestimate=hist(z,t)/(Delta*100000);subplot(3,1,3)bar(t,PDFestimate)Of the three estimated PDF plots you plotted in this experiment, this last one should lookmost like a Gaussian bell-shaped 
urve.Example 3. In this example, we 
hoose our independent random samples from a Uniform(�1; 1)distribution. A

ording to Appendix A, this distribution has mean � = 0 and varian
e�2 = 1=3. Run the following s
ript, whi
h estimates the CDF ofZ = (X1 +X2 + � � �+X32)� 32��p32 ;where we have taken 32 independent samples X1; X2; � � � ; X32 from our uniform distribution.n=32;number_of_experiments=100000;x=2*rand(n,number_of_experiments)-1;var_x=1/3;Sn=sum(x);% Find the PDF of y=Sn/sqrt(n*var_x)y=Sn/sqrt(n*var_x);Bins=number_of_experiments/1000;y_min=min(y);y_max=max(y);Delta=(y_max-y_min)/Bins;t=y_min+Delta/2+[0:Bins-1℄*Delta;P=
umsum(hist(y,t)/number_of_experiments);u=-4:0.01:4;P_N01=
df('norm',u,0,1);plot(t,P,'b--',u,P_N01,'r-')axis([-4 4 -0.1 1.1℄)title('CDF of CLT Z variable(dashed), CDF of standard Gaussian(solid)')You will see two plots on your 
omputer s
reen on the same set of axes. One of them (thedashed plot) is the estimated CDF of the 
entral limit theorem Z variable, using 32 samples.The other one (the solid line plot) is the a
tual CDF of the Gaussian(0; 1) distribution. Dothe two plots seems pretty 
lose together? Now see if your terminal is powerful enough foryou to re-run the pre
eding s
ript in whi
h you 
hange the �rst line to n = 100. Sin
e youare now using 100 samples, the two CDF 
urves might look even 
loser now.4



9.3 Exp 3: CLT for a Dis
rete Sampling DistributionIn Experiment 2, we sampled from a 
ontinuous distribution. In this experiment, you willsample from a dis
rete distribution and see that the CLT is still true. Unlike Experiment 2,you will use Matlab to �nd the pre
ise distribution of the normalized sum Z in (2) (insteadof estimating this distribution with simulated samples). This pre
ise distribution is foundvia Matlab fun
tion \
onv" as was done in Experiment 1 in a simpler 
ase.Example 4. In this example, you illustrate the CLT with the following dis
rete densitybeing the one from whi
h independent samples are summed up:f(x) = (1=2)Æ(x) + (1=2)Æ(x� 1)Run the MATLAB program whi
h follows in order to plot the density of the normalized sumZ given in (1) when n = 1600. (We 
hose this value of n be
ause it gave a ni
e spa
ing of:05 between the values of the normalized sum in (2).)n=1600;%generate range of values of sum X1+X2+...+Xnk=0:n;%generate prob dist of sum via 
onvolutionp=[.5 .5℄;q=p;for i=1:n-1q=
onv(q,p);endQ=q; %Q is the prob dist of the summean_of_dist = .5;varian
e_of_dist = .25;mean_of_sum = n*mean_of_dist;standev_of_sum = sqrt(n*varian
e_of_dist);%generate range of values of normalized sumt=(k-mean_of_sum)/standev_of_sum;density=standev_of_sum*Q; %approx. values of density of normalized sumplot(t,density)axis([-3 3 0 .5℄)Run tests on the resulting plot to see if it 
losely approximates the standard Gaussian densityfun
tion exp(�x2=2)=p2�. (Does the 
urve have the right peak value? Does it have theright value at x = �1?) Try to modify the 
ode so that you get the approximate GaussianCLT plot on the same set of axes as the a
tual standard Gaussian density 
urve.Example 5. In this example, the CLT normalized sum Z (2) is based on n = 1000 Xisamples from the dis
rete probability distribution in whi
h the values 1; 2; 3 are taken onwith probabilities 1=3; 1=3; 1=3. The following program �nds the CDF of the RV Z and then
omputes the exa
t value of P (Z � 1): 5




lear;n=1000;p=[1/3 1/3 1/3℄;q=p;for i=1:n-1q=
onv(q,p);endCDF=
umsum(q); %these are the values of CDF of Zmu = 2;sigma = sqrt(2/3); %
he
k that this number is rightz=((1000:3000)-n*mu)/(sqrt(n)*sigma); %these are the values of ZProbability=CDF(max(find(z<=1)))By the CLT, the distribution of Z should be approximately standard Gaussian. On page123 of your textbook, look up the probability P [Z � 1℄ for a standard Gaussian Z. Is the�gure given by last line of above program 
orre
t to two de
imal pla
es? Change the lastline of the program in order to obtain P [Z � 1:5℄ and then 
ompare to the 
umulative probyou get from page 123.9.4 Exp 4: Con�den
e IntervalsSuppose you take n independent samples X1; X2; � � � ; Xn from a Gaussian distribution withunknown mean � and known standard deviation �; these Xi's form a so-
alled \randomsample of size n". The sample mean �X based on this random sample is de�ned by�X �= X1 +X2 + � � �+Xnn :We want to take an interval 
entered at �X whi
h will be highly likely to 
ontain �. Forexample, we 
an take this interval to be[ �X � 1:645�=pn; �X + 1:645�=pn℄; (3)whi
h is 
alled a 90% 
on�den
e interval for � be
ause � is inside this interval with probability0:90, that is, P [ �X � 1:645�=pn < � < �X + 1:645�=pn℄ = 0:90:This means that if we determine a large number of 
on�den
e intervals by taking manydi�erent random samples of size n, we 
an expe
t that about 90% of these 
on�den
e intervalswill 
ontain �. The interval [ �X � 1:96�=pn; �X + 1:96�=pn℄ (4)is the 95% 
on�den
e interval for �, using this same Gaussian distribution|about 95% of alarge number of 
on�
en
e intervals should 
ontain �.Example 6. In this example, you use Matlab to verify that (4) indeed is the 95% 
on�den
einterval for the mean � when you sample from a Gaussian distribution. In the following6



Matlab s
ript, you 
an enter in on the �rst 3 lines whatever mean � and standard deviation� you want for your Gaussian sampling distribution, as well as the number of samples n thatyou want to take. The s
ript then 
omputes what per
entage of 50000 
on�den
e intervals
ontain �.mu = ; %enter in the mean that you wantsigma = ; %enter in the standard deviation that you wantn = ; %enter in the sample size that you wantx=sigma*randn(n,50000)+mu;sample_means=mean(x); %gives 50000 sample meansC=1.96;p=mean(mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-C*sigma/sqrt(n));per
entage=round(100*p) %gives per
entage of 
onf intervals 
ontaining muRun the pre
eding s
ript with � = 0, � = 1, and n = 10 several times. Most of the time,does it appear that you are getting 95% of the 
on�den
e intervals to 
ontain �? Now tryn = 15, � = 1, � = 2. Do you rea
h the same 
on
lusion?Example 7. In this example, you provide a Matlab veri�
ation that (3) is a 90% 
on�den
einterval for the mean � when you sample from a Gaussian distribution. The Matlab s
riptfor verifying this is nowmu = ; %enter in the mean that you wantsigma = ; %enter in the standard deviation that you wantn = ; %enter in the sample size that you wantx=sigma*randn(n,50000)+mu;sample_means=mean(x); %gives 50000 sample meansC=1.645;p=mean(mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-C*sigma/sqrt(n));per
entage=round(100*p) %gives per
entage of 
onf intervals 
ontaining muRun the pre
eding s
ript with � = 0, � = 1, and n = 10 several times. Most of the time,does it appear that you are getting 90% of the 
on�den
e intervals to 
ontain �? Now tryn = 15, � = 1, � = 2. Do you rea
h the same 
on
lusion?Example 8. Suppose you form sample means based on samples of size n = 3 from auniform distribution with mean � and varian
e �2. In this example, you will verify that[ �X � 0:95�; �X + 0:95�℄is an approximate 90% 
on�den
e interval. The following Matlab s
ript simulates 50000sample means for samples of size 3 from a Uniform(a; b) distribution. It then 
omputes whatper
entage of the 50000 
on�den
e intervals 
ontain �:a ; %enter in the value of ab ; %enter in the value of bmu=(a+b)/2;sigma=(b-a)/sqrt(12); 7



x=(b-a)*rand(3,50000)+a;sample_means=mean(x); %gives 50000 sample meansp=mean(mu < sample_means + .95*sigma & mu > sample_means - .95*sigma);per
entage=round(100*p) %gives per
entage of 
onf intervals 
ontaining muRun the above s
ript a few times with a = 0; b = 1. Do most of the per
entages seem tobe 90%? Now run the above s
ript a few times with a = 1; b = 5. Again, do most of theper
entages seem to be 90%? If you like, run the s
ript with some other 
hoi
e of a; b 
hosenby you.Example 9. Suppose you form sample means based on samples of size n = 5 from anexponential distribution with mean � = 1. It is 
laimed that[ �X � 0:602; �X + 0:602℄is an approximate 85% 
on�den
e interval in this situation. Write a Matlab program whi
hwill 
ompute 50000 of these 
on�den
e intervals, and will 
he
k to see what per
entage ofthem 
ontain � = 1. See whether you get about 85% of them to work out right. (Hint: Re
allthat \-log(rand(1,n))" simulates n samples from this exponential distribution. Using thisfa
t, you 
an modify the Matlab s
ript in Example 8 to obtain a Matlab s
ript that willwork for this Example.Exer
ise. Here is something for you to think about. Consider again the 90% 
on�den
einterval (3) for the mean of a Gaussian distribution. What happens to the width2(1:645)�pnof the 
on�den
e interval when you double the number of samples n? If n samples giveswidth w, how many samples would you need in order to squeeze the width of the 
on�den
einterval down to w=2? (Note that the trade-o� between the width of the 
on�den
e intervaland the number of samples required to a
hieve this width is important be
ause as the widthof the 
on�den
e interval gets smaller, the 
on�den
e interval estimate of � gets better.)9.5 Exp 5: Varian
e of Sum of Dependent RV'sThe varian
e of a sum of independent RV's is the sum of the separate varian
es. However,we learned in 
lass a few le
tures ago that this property may not hold if the random variablesyou are adding up are statisti
ally dependent. In this experiment, you use Matlab to estimatethe varian
e of the sum of possibly dependent RV's. You then attempt to verify the estimateby an exa
t 
omputation of the varian
e of the sum.Example 10. Let Z1; Z2; Z3; Z4 be independent Gaussian(0,1) RV's and let X1; X2; X3 bethe RV's X1 = Z1 + Z2X2 = Z2 + Z3X3 = Z3 + Z48



Run the following Matlab s
ript, whi
h estimates the varian
e of X1+X2+X3 and the sumof the varian
es of the Xi's:z1=randn(1,50000);z2=randn(1,50000);z3=randn(1,50000);z4=randn(1,50000);x1=z1+z2; x2=z2+z3; x3=z3+z4;%estimate the varian
e of X1 + X2 + X3 as followsvar(x1+x2+x3)%now estimate the sum of the separate varian
es as followsvar(x1) + var(x2) + var(x3)Look at the estimate for V ar(X1 +X2 +X3) (5)and the estimate for V ar(X1) + V ar(X2) + V ar(X3) (6)whi
h Matlab printed out on your 
omputer s
reen. On the basis of these estimates, do youbelieve that V ar(X1 +X2 +X3) 6= V ar(X1) + V ar(X2) + V ar(X3) (7)is true? To �nish this example, take pen
il and paper and see if you 
an use EE 3025 theoryto 
ompute the exa
t values of (5) and (6). Are they the same? (Hint: We haveX1 +X2 +X3 = Z1 + 2Z2 + 2Z3 + Z4;and the terms on the right side are independent.)Example 11. Let Z1; Z2; Z3; Z4 be independent Gaussian(0,1) RV's and let X1; X2; X3; X4be the RV's X1 = Z1X2 = Z2 +X1=2X3 = Z3 +X2=2X4 = Z4 +X3=2Constru
t and run a Matlab s
ript to estimateV ar(X1 +X2 +X3 +X4): (8)Then try to 
ompute the varian
e (8) by hand.Final Remarks. With the �ltering operations used in this experiment, we have seeninstan
es illustrating how independent RV's Zi are 
onverted at the �lter output into de-pendent RV's Xi. But, even though the Xi's exhibit dependen
e, it still might be true thatstatements like the following hold:limn!1P 24Pni=1(Xi � E[Xi℄)qV ar(Pni=1Xi) � z35 = 1p2� Z z�1 exp(�t2=2)dt (9)9



P � limn!1 X1 +X2 + � � �+Xnn = C� = 1; some 
onstant C: (10)P " limn!1 X21 +X22 + � � �+X2nn = D# = 1; some 
onstant D: (11)Statement (9) is what the CLT be
omes in the dependent 
ase. Statements (10)-(11) arelaws of large numbers.
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EE 3025 S2007 Re
itation 9 Lab FormName and Student Number of Team Member 1:Name and Student Number of Team Member 2:Name and Student Number of Team Member 3:************************************************************************************Study Experiment 5 
arefully. In the examples in this experiment, you �lter independentRV's Zi to obtain dependent RV's Xi. I will have you do similar �ltering and then examinethe behavior of averages like X21 +X22 + � � �+X2n�1 +X2nnfor large n. You will see that su
h averages 
an 
onverge to some �xed quantity as n be
omeslarge even though the terms are dependent.

11


