EE 3025 Dr. Kieffer

9 Rec 9: Limit Theorems/Confidence Intervals

Directions: Your instructor will spend the the first 40 minutes of the recitation period
working some review problems and going over one or more Matlab experiments in the fol-
lowing. During the last 10 minutes of recitation, your proctor will give you a “Lab Form”
that your recitation team completes, signs, and turns in. See the last page for an indication
of what you will be asked to do on the Lab Form.

Due to time limitations, only a part of the following can be covered during the recitation
period. However, you might want in the future to try some of the uncovered experiments on
your own. They could give skills useful on some future homework problems and could lend
insight into your understanding of the course from an experimental point of view.

This Week’s Topics.

e Sums of Independent RV’s and Convolution

Central Limit Theorem (CLT) for a Continuous Sampling Distribution

CLT for a Discrete Sampling Distribution

Confidence Intervals

Variance of Sum of Dependent RV’s

9.1 Exp 1: Sums of Independent RV’s and Convolution
Let X, and X, be independent discrete RV’s, and let

X:X1+X2

be the sum. Then
px () = px, (¥) * px, (z), (1)

where we are taking convolution in the usual EE 3015 sense. I will eventually prove this
result in the class lecture notes. In this experiment, you will verify formula (1) using Matlab.
In Matlab, convolution is performed using the function “conv”.

Ezample 1. In this example, you let RV’s X; and X5 be the numbers which come up in
flipping a fair die two times. We know from earlier in the course that the RV

X = Xl + X27
which is the total of the numbers on the two die flips, has a PMF distributed over the set
{2,3,4,5,6,7,8,9,10,11,12}

according to certain probabilities. First, run the following Matlab script, which generates a
histogram approximation of this PMF based upon 10000 simulated observations of X:



x1=ceil (6*rand(1,10000));
x2=ceil (6*rand(1,10000));
x=x1+x2;

subplot(2,1,1)
bar(2:12,hist(x,2:12)/10000)

Now run the following Matlab script, which gives the exact plot of the PMF of X using
convolution:

PMF1=[1/6 1/6 1/6 1/6 1/6 1/6];
PMF2=[1/6 1/6 1/6 1/6 1/6 1/6];
PMFX=conv (PMF1,PMF2) ;
subplot(2,1,2)

bar(2:12,PMFX)

Compare the two plots you see on your computer screen. Are the two plots about the same?

9.2 Exp 2: CLT for a Continuous Sampling Distribution

Suppose you have a probability distribution governed by a density f(z). Let n be a large
positive integer. Independently select n random samples X, Xo, ..., X,, according to this
distribution. Let u and o2 be the mean and variance of the density f(x), given by

u:/o:oxf(x)dx

ot = [ (o= (@)de
Assume that the following assumptions hold:
—o00 < < oo, 0<o?<o0.
The central limit theorem (CLT) says that the random variable

(X1 +Xo+...+X,) —nu
ov/n

is approximately distributed according to the standard Gaussian distribution, meaning that

Z = 2)

b
Pla<Z <b)~ / exp(—z*/2)dx.

1
V2
The approximation becomes better as n gets bigger. (In the limit as n — oo, the approxi-
mation becomes exact.)

This is an amazing result if you consider the fact that this approximate Gaussian behavior
will occur regardless of what the density f(z) is.

In this experiment, we use Matlab to convince you of the truth of the CLT when the
distribution we sample from is a continuous distribution.



Erample 2. We take samples from an exponential distribution with mean g = 1 and
variance o2 = 1. Run the following Matlab script, which estimates the PDF of

(Xy + Xy) — 2p
o2 ’

where Xy, X5 are two random samples from our exponential distribution.

n=2;

x=sum(-log(rand(n,100000)));
z=(x-mean(x))/std(x);

N=1000;

A=min(z) ;B=max(z) ;

Delta=(B-A)/N;
t=A-Delta/2+[1:N]*Delta;
PDFestimate=hist(z,t)/(Delta*x100000) ;
subplot(3,1,1)

bar (t,PDFestimate)

Your estimated PDF plot looks kind of skewed, doesn’t it? (Not very Gaussian bell-shaped
at alll) Now run the following script, which estimates the PDF of

(X1 + X9+ + X5) — 81
oV/8 ’

where we have now taken 8 independent samples X, Xy, ---, Xg from our exponential dis-
tribution.

n=8;

x=sum(-log(rand(n,100000)));
z=(x-mean(x))/std(x);

N=1000;

A=min(z) ;B=max(z) ;

Delta=(B-A)/N;
t=A-Delta/2+[1:N]*Delta;
PDFestimate=hist(z,t)/(Delta*x100000) ;
subplot(3,1,2)

bar(t,PDFestimate)

Does your estimated PDF plot look more like a Gaussian bell-shaped curve? Now run the
following script, which estimates the PDF of

(X1+X2++X32> —32,u
oV 32 ’

where we have now taken 32 independent samples X7, X5, .-+, X35 from our exponential
distribution.



n=32;

x=sum(-log(rand(n,100000)));
z=(x-mean(x))/std(x);

N=1000;

A=min(z) ;B=max(z) ;

Delta=(B-A)/N;
t=A-Delta/2+[1:N]*Delta;
PDFestimate=hist(z,t)/(Delta*x100000) ;
subplot(3,1,3)

bar(t,PDFestimate)

Of the three estimated PDF plots you plotted in this experiment, this last one should look
most like a Gaussian bell-shaped curve.

Ezample 3. In this example, we choose our independent random samples from a Uniform(—1, 1)
distribution. According to Appendix A, this distribution has mean u = 0 and variance
0% = 1/3. Run the following script, which estimates the CDF of

(X1+X2+'--+X32)—32,u

7 =
oV 32
where we have taken 32 independent samples X7, X5, - -+, X35 from our uniform distribution.

n=32;

number_of_experiments=100000;

x=2*rand (n,number_of_experiments)-1;
var_x=1/3;

Sn=sum(x) ;

% Find the PDF of y=Sn/sqrt(n*var_x)
y=Sn/sqrt (n*var_x) ;
Bins=number_of_experiments/1000;
y_min=min(y);

y_max=max(y) ;

Delta=(y_max-y_min)/Bins;
t=y_min+Delta/2+[0:Bins-1]*Delta;
P=cumsum(hist (y,t) /number_of_experiments) ;
u=-4:0.01:4;

P_NO1=cdf (’norm’,u,0,1);
plot(t,P,’b--’,u,P_NO1,’r-")

axis([-4 4 -0.1 1.1])

title(’CDF of CLT Z variable(dashed), CDF of standard Gaussian(solid)’)

You will see two plots on your computer screen on the same set of axes. One of them (the
dashed plot) is the estimated CDF of the central limit theorem Z variable, using 32 samples.
The other one (the solid line plot) is the actual CDF of the Gaussian(0, 1) distribution. Do
the two plots seems pretty close together? Now see if your terminal is powerful enough for
you to re-run the preceding script in which you change the first line to n = 100. Since you
are now using 100 samples, the two CDF curves might look even closer now.



9.3 Exp 3: CLT for a Discrete Sampling Distribution

In Experiment 2, we sampled from a continuous distribution. In this experiment, you will
sample from a discrete distribution and see that the CLT is still true. Unlike Experiment 2,
you will use Matlab to find the precise distribution of the normalized sum 7 in (2) (instead
of estimating this distribution with simulated samples). This precise distribution is found
via Matlab function “conv” as was done in Experiment 1 in a simpler case.

Erample 4. In this example, you illustrate the CLT with the following discrete density
being the one from which independent samples are summed up:

fla) = (1/2)é(x) + (1/2)0(x = 1)

Run the MATLAB program which follows in order to plot the density of the normalized sum
Z given in (1) when n = 1600. (We chose this value of n because it gave a nice spacing of
.05 between the values of the normalized sum in (2).)

n=1600;

hgenerate range of values of sum X1+X2+...+Xn
k=0:n;

hgenerate prob dist of sum via convolution
p=[.5 .5];

qQ=p;

for i=1:n-1

g=conv(q,p);

end

Q=q; %Q is the prob dist of the sum
mean_of_dist = .5;

variance_of_dist = .25;

mean_of_sum = n*mean_of_dist;

standev_of_sum = sqrt(n*variance_of_dist);
hgenerate range of values of normalized sum
t=(k-mean_of_sum)/standev_of_sum;
density=standev_of_sum*Q; ‘approx. values of density of normalized sum
plot(t,density)

axis([-3 3 0 .5])

Run tests on the resulting plot to see if it closely approximates the standard GGaussian density
function exp(—a2/2)/v2r. (Does the curve have the right peak value? Does it have the
right value at x = +17) Try to modify the code so that you get the approximate Gaussian
CLT plot on the same set of axes as the actual standard Gaussian density curve.

Ezample 5. In this example, the CLT normalized sum Z (2) is based on n = 1000 X;
samples from the discrete probability distribution in which the values 1,2,3 are taken on
with probabilities 1/3,1/3,1/3. The following program finds the CDF of the RV Z and then
computes the exact value of P(Z < 1):



clear;

n=1000;

p=[1/3 1/3 1/3];

q=p;

for i=1:n-1

g=conv(q,p);

end

CDF=cumsum(q); %these are the values of CDF of Z
mu = 2;

sigma = sqrt(2/3); Jcheck that this number is right
z=((1000:3000) -n*mu) / (sqrt(n) *sigma) ; %these are the values of Z
Probability=CDF (max(find(z<=1)))

By the CLT, the distribution of Z should be approximately standard Gaussian. On page
123 of your textbook, look up the probability P[Z < 1] for a standard Gaussian Z. Is the
figure given by last line of above program correct to two decimal places? Change the last
line of the program in order to obtain P[Z < 1.5] and then compare to the cumulative prob
you get from page 123.

9.4 Exp 4: Confidence Intervals

Suppose you take n independent samples X, Xo,---, X, from a Gaussian distribution with
unknown mean g and known standard deviation o; these X;’s form a so-called “random
sample of size n”. The sample mean X based on this random sample is defined by

A X+ X4+ X,
- .

X

We want to take an interval centered at X which will be highly likely to contain ;. For
example, we can take this interval to be

[X —1.6450/v/n, X + 1.6450//n], (3)

which is called a 90% confidence interval for u because p is inside this interval with probability
0.90, that is, B )
P[X — 1.6450/v/n < u < X + 1.6450/y/n| = 0.90.

This means that if we determine a large number of confidence intervals by taking many
different random samples of size n, we can expect that about 90% of these confidence intervals
will contain p. The interval

(X —1.960//n, X + 1.960/+/n] (4)

is the 95% confidence interval for u, using this same Gaussian distribution—about 95% of a
large number of conficence intervals should contain pu.

Ezample 6. In this example, you use Matlab to verify that (4) indeed is the 95% confidence
interval for the mean g when you sample from a Gaussian distribution. In the following



Matlab script, you can enter in on the first 3 lines whatever mean p and standard deviation
o you want for your Gaussian sampling distribution, as well as the number of samples n that
you want to take. The script then computes what percentage of 50000 confidence intervals
contain .

mu = ; henter in the mean that you want
sigma = ; henter in the standard deviation that you want
n = ; henter in the sample size that you want

x=sigma*randn(n,50000)+mu;

sample_means=mean(x); ’%gives 50000 sample means

C=1.96;

p=mean (mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-Cxsigma/sqrt(n));
percentage=round (100*p) Jgives percentage of conf intervals containing mu

Run the preceding script with ¢ = 0, 0 = 1, and n = 10 several times. Most of the time,
does it appear that you are getting 95% of the confidence intervals to contain u? Now try
n =15 u=1,0=2. Do you reach the same conclusion?

Ezample 7. In this example, you provide a Matlab verification that (3) is a 90% confidence
interval for the mean p when you sample from a Gaussian distribution. The Matlab script
for verifying this is now

mu = ; henter in the mean that you want
sigma = ; henter in the standard deviation that you want
n = ; henter in the sample size that you want

x=sigmax*randn(n,50000)+mu;

sample_means=mean(x); %gives 50000 sample means

C=1.645;

p=mean (mu<sample_means+C*sigma/sqrt(n) & mu>sample_means-C*sigma/sqrt(n));
percentage=round (100*p) Jgives percentage of conf intervals containing mu

Run the preceding script with 4 = 0, 0 = 1, and n = 10 several times. Most of the time,
does it appear that you are getting 90% of the confidence intervals to contain u? Now try
n =15 u=1, 0 =2. Do you reach the same conclusion?

Ezample 8. Suppose you form sample means based on samples of size n = 3 from a
uniform distribution with mean p and variance o?. In this example, you will verify that

[X —0.950, X + 0.950]

is an approximate 90% confidence interval. The following Matlab script simulates 50000
sample means for samples of size 3 from a Uniform(a, b) distribution. It then computes what
percentage of the 50000 confidence intervals contain u:

a ; %enter in the value of a
b ; %enter in the value of b
mu=(a+b)/2;

sigma=(b-a)/sqrt(12);



x=(b-a)*rand(3,50000) +a;

sample_means=mean(x); ’%gives 50000 sample means

p=mean(mu < sample_means + .95*sigma & mu > sample_means - .95*sigma);
percentage=round (100*p) Jgives percentage of conf intervals containing mu

Run the above script a few times with ¢ = 0,06 = 1. Do most of the percentages seem to
be 90%? Now run the above script a few times with « = 1,0 = 5. Again, do most of the
percentages seem to be 90%7 If you like, run the script with some other choice of a, b chosen
by you.

Ezample 9. Suppose you form sample means based on samples of size n = 5 from an
exponential distribution with mean g = 1. It is claimed that

[X — 0.602, X + 0.602]

is an approximate 85% confidence interval in this situation. Write a Matlab program which
will compute 50000 of these confidence intervals, and will check to see what percentage of
them contain u = 1. See whether you get about 85% of them to work out right. (Hint: Recall
that “~log(rand(1,n))” simulates n samples from this exponential distribution. Using this
fact, you can modify the Matlab script in Example 8 to obtain a Matlab script that will
work for this Example.

Ezxercise. Here is something for you to think about. Consider again the 90% confidence
interval (3) for the mean of a Gaussian distribution. What happens to the width

2(1.645)0
NG

of the confidence interval when you double the number of samples n? If n samples gives
width w, how many samples would you need in order to squeeze the width of the confidence
interval down to w/2? (Note that the trade-off between the width of the confidence interval
and the number of samples required to achieve this width is important because as the width
of the confidence interval gets smaller, the confidence interval estimate of y gets better.)

9.5 Exp 5: Variance of Sum of Dependent RV’s

The variance of a sum of independent RV’s is the sum of the separate variances. However,
we learned in class a few lectures ago that this property may not hold if the random variables
you are adding up are statistically dependent. In this experiment, you use Matlab to estimate
the variance of the sum of possibly dependent RV’s. You then attempt to verify the estimate
by an exact computation of the variance of the sum.

Ezample 10. Let Zy, Zy, Z3, Z4 be independent Gaussian(0,1) RV’s and let Xy, X5, X3 be
the RV’s

X1 - Z1 + ZQ
XQ — ZQ —|— Z‘;
X3 = Z3 + Z4



Run the following Matlab script, which estimates the variance of X; 4+ X5 + X3 and the sum
of the variances of the X;’s:

z1=randn(1,50000) ;

z2=randn(1,50000) ;

z3=randn(1,50000) ;

z4=randn(1,50000) ;

x1=z1+z2; x2=z2+z3; x3=z3+z4;

%hestimate the variance of X1 + X2 + X3 as follows

var (x1+x2+x3)

Jnow estimate the sum of the separate variances as follows
var(x1l) + var(x2) + var(x3)

Look at the estimate for
Var(Xl +X2+X3) (5)
and the estimate for

Var(X;) + Var(Xy) + Var(X3) (6)

which Matlab printed out on your computer screen. On the basis of these estimates, do you
believe that
Var(X; + Xo + X3) # Var(Xy) + Var(Xs) + Var(X3) (7)

is true? To finish this example, take pencil and paper and see if you can use EE 3025 theory
to compute the exact values of (5) and (6). Are they the same? (Hint: We have
X1+X2+X3 :Z1+2Z2+223+Z4,

and the terms on the right side are independent.)

Example 11. Let Zy, Zy, Z3, Z4 be independent Gaussian(0,1) RV’s and let X7, X5, X3, X
be the RV’s

X, = 7,
Xo = Zy+X,/2
Xy = Zy+Xy/2
Xy = Zi+ X3)2

Construct and run a Matlab script to estimate
Var(Xl +X2+X3+X4) (8)

Then try to compute the variance (8) by hand.

Final Remarks. With the filtering operations used in this experiment, we have seen
instances illustrating how independent RV’s Z; are converted at the filter output into de-
pendent RV’s X,;. But, even though the X;’s exhibit dependence, it still might be true that
statements like the following hold:

o p | DX EX) [ 1 g

i=1

exp(—12/2)dt (9)



X, +Xo+ -+ X,
P [li_)rn s = C’} =1, some constant C. (10)
n—00 n
X214 X214 ... 4 X2
P [li_)rn [ T A 7 D] =1, some constant D. (11)
n oo n

Statement (9) is what the CLT becomes in the dependent case. Statements (10)-(11) are

laws of large numbers.
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EE 3025 S2007 Recitation 9 Lab Form

Name and Student Number of Team Member 1:
Name and Student Number of Team Member 2:

Name and Student Number of Team Member 3:
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Study Experiment 5 carefully. In the examples in this experiment, you filter independent
RV’s Z; to obtain dependent RV’s X;. I will have you do similar filtering and then examine
the behavior of averages like

X2+ X2+ 4+ X2+ X2
mn

for large n. You will see that such averages can converge to some fixed quantity as n becomes
large even though the terms are dependent.
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