EE 3025 Dr. Kieffer

Chapters 2 and 3 Study Problems

1 CDPF’s

Problem 2.1: A discrete random variable X has the following CDF function Fy(z):

Fy(x)

0.65

0.35

0.20

(a) Plot the PMF function px(z)
(b) Compute the probabilities P[3 < X < 9] and P[3 < X <9].

Solution to (a).
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Solution to (b).

Problem 2.2: A RV X has CDF
Fx(x) = (1—e™"/2)u(x).
Find the PDF.

Solution. By the product rule for differentiation,

fx(x) = dFx(z)/dx=(1/2)e " u(x) + (1 — e */2)du(x)/dx
= (1/2)e *u(z) + (1 —e */2)0(x)
= (1/2)e""u(x) + (1/2)é(x)

(On the last term, I used the “sifting property” of the delta function:
o(x)d(x) = ¢(0)d(x),
whenever ¢(z) is a function continuous at x = 0.) From the form of the PDF, it is clear that
we have a mixed random variable.
Problem 2.3: An integer-valued discrete RV has the following table of CDF values:
Fx(0) = 0.0002

Fx(1) = 0.0021
Fx(2) = 0.0123
Fy(3) = 0.0464
Fx(4) = 0.1260
Fx(5) = 0.2639
Fy(6) = 0.4478
Fy(7) = 0.6405
Fy(8) = 0.8011
Fyx(9) = 0.9081
Fyx(10) = 0.9652
Fy(11) = 0.9894
Fy(12) = 0.9975
Fyx(13) = 0.9995
Fy(14) = 0.9999
Fy(15) = 1.0000
Fy(16) = 1.0000



(a) Compute P(X =5).
Solution. In all the solutions, I use the formula

Pla < X <b)=Fx(b) — Fx(a—1), a,bintegers
In this case, we have
P(X=5)=P(b <X <5)=Fx(5)— Fx(4) =0.1379.

(b) Compute P(3 < X <6).
Solution.

P(3< X <6)=P(4< X <6)=Fx(6) — Fx(3) = 0.4014.

(c) Compute P(X > 7).
Solution.

P(X>7) = P(T<X <)
= Fy(oo) — Fx(6) = 1 — Fx(6) = 0.5522.

(d) What is the conditional probability that X > 6, given that X > 37
Solution.

P(X>6) 1-Fx(6)

P(X >3) 1-Fx(3)

P(X >6/X >3) = = 0.58.

2 Common Distributions

Problem 3.1: A continuous random variable X is uniformly distributed in the interval
[A, B].

(a) Suppose it is known that gy = —2 and 0% = 12. Find A and find B.

(b) Write a two line MATLAB program which will simulate 10,000 values of the
random variable X.

Solution to (a).

Let L = length of interval

Then
L’/12=0"=12= L =12

from which we easily obtain (since p is the midpoint)
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Solution to (b).

Let U be uniform in [0,1]. The mean and variance are 1/2 and 1/12, respectively.
Translation does not change the variance. So, U — 1/2 has mean 0 and variance 1/12.
Scaling does not change the mean. So, 12(U —1/2) has mean 0 and variance 12. Translation
does not change the variance. So, 12(U —1/2) —2 = 12U — 8 has mean —2 and variance 12,
as desired.

Another way to see this is the following. The factor 12 in 12U — 8 stretches the interval
[0,1] out into the interval [0,12]. The term —8 in 12U — 8 translates the interval [0, 12]
backwards to the interval [—8, 4].

A third approach is simply to normalize U and X to make means equal to zero and
variances equal to one. This yields the equation

X+2 U-1/2
V2o 112

which, when simplified, yields X = 12U — 8.

Or, take X = CU + D and choose C, D so that X = —8 when U = 0 and X = 4 when
U=1.

The program is:

u=rand(1,10000) ;
x=12*%u-8;

Problem 3.2: An instructor models the score Y that a randomly chosen student makes on
an exam as a Gaussian random variable with py = 55 and oy = 8. (For example, the
instructor could select py based on the class average, and could select oy based on the
sample standard deviation of the scores of the class.)

(a) The instructor has decided that the middle third of the students will receive a “C”
on the exam. What range of scores represents a “C”?

(b) What range of scores would represent a “B” grade, if the instructor has decided
that 25% of the students should receive a “B”?7

Solution to (a). The random variable Z = (X — 55)/8 has the distribution N(0,1).
We have
P55 -C <Y <55+ (C]=.33

and must determine the constant C. In terms of Z, we have
P55 —-C <Y <55+ C| = P[-C/8<Z<(C/8]
(C/8) — ®(=C/8)
= ®(C/8) —[1 - ®(C/8)]



This gives us

20(C/8) -1 = .33
o(C/8) = .67
C/8 = ®.67)=.44
C = 8(.44) =3.52
Rounding down 3.52 to 3.5, this tells us that the “C” range should be 554 3.5, or from 51.5
to 58.5.

Solution to (b). We know from part (a) that 58.5 is the highest “C”. We need to
determine a threshold B such that

P[58.5<Y < B]=.25
This translates to the inequality
P[(58.5 —55)/8 < Z < (B —55)/8 = .25

which tells us that
®((B—55)/8) — ®(3.5/8) = .25

or

B =55+ 8[®'(.25 + ®(3.5/8))] = 66.1937
Roughly speaking, the instructor should grant B’s in the range from 58.5 to 66.

Problem 3.3: This problem concerns the Gaussian and binomial distributions.

(a) Let X be Gaussian with mean y = 2 and variance o2 = 100. Using the table on
page 142, compute P[5 < X < 13].

(b) Let Y be a random variable having the binomial distribution with n = 5 and
p = 1/4. Compute P[Y > 2].

Solution to (a). Z = (X — 2)/10 is standard Gaussian.
P[5< X <13]=P[0.3< Z < 1.1] = ®(1.1) — $(.3) = 0.8643 — 0.6179 = 0.2464

Solution to (b).

PY > 2 = 1—py(0)—py(1) = 1 (g) G)O (%)5 _ (f) (i) <Z>4 _ 376/1024 — 47/128

Problem 3.4: Over many workdays, it is noticed that phone calls come into the ECE Dept.
central number 625-3300 at an averate rate of 0.46 calls/minute. It is desired to assess
the likelihood of certain numbers of calls that can occur on the next workday. Let X
be the total number of phone calls that will come into the number 625-3300 between
9:00 am and 9:05 am the next workday. Compute
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(a) P(X=1)
(b) P(X >3)
(c) P(2< X < 4)

Solution to (a). X is a Poisson(a) RV, with a = 5% (0.46) = 2.3, the expected number
of phone calls in a 5 minute period. For a Poisson RV, we have

P(X =z)=a" “/x!, 2=0,1,2,3,---.
Therefore,
P(X = 1) = [ae™]ars3 = 0.2306.

So, we have a little bit less than 1 chance in 4 that just one call will come in the next
workday.

Solution to (b).
P(X>3) = 1-P(X<2)=1-P(X=0)—P(X=1)—P(X =2)
= 1—[e7%az23 — 0.2306 — [a*e™%/2]4=2.3
= 1-0.1003 — 0.2306 — 0.2652 = 0.4039

Solution to (c).

P(X=2) = 0.2652
P(X =3) = [a’e */6]a—0.3 = 0.2033
P(X =4) = [a'e™®/24]4=03 = 0.1169

Therefore,

P2< X <4)=P(X =2)4P(X =3)+ P(X = 4) = 0.5854.

Problem 3.5: Let RV X denote the lifetime (in hours) of a randomly chosen lite bulb, and
we suppose that X has an exponential distribution with PDF

| exp(—x/1000)/1000, = >0
fx(@) = { 0, <0
Compute the following:
(a) P(X > 1000).
(b) P(X > 1500/X > 1000).
(c) The probability that exactly 3 out of 5 lite bulbs last at least 1000 hours



Solution to (a). We have

P(X >1000) = /OO fx(z)dz = [— exp(—2/1000)]; 7500 = exp(—1) = 0.3679.
1000

Solution to (b).
P(X > 1500)

P(X > 1500/X > 1000) = P(X > 1000)

= exp(—1.5)/exp(—1) = 0.6065.

Solution to (c). This part represents an interesting combination of the exponential
and binomial distributions. The 5 lite bulbs are tested, one after the other. These tests
constitute independent trials. The total number of bulbs that do well on the tests (i.e., last
a certain period of time) must therefore follow a Binomial(n,p) distribution with n =5 and
p determined by the exponential distribution. In our case here,

p = P(X >1000) = 0.3679.
Letting Y be the number of bulbs lasting at least 1000 hours, we have

P(Y =3) = (2) (0.3679)3(1 — 0.3679)* = 0.1989.

Problem 3.6: The number of message packets arriving at a server in a given time interval
is assumed to be a Poisson RV. Assume that the probability of no arrivals in a one
millisecond interval is 0.25.

(a) What is the expected number of packets that arrive in a one millisecond interval?

(b) What is the probability that exactly one message packet arrives in a one millisec-
ond interval?

(c) What is the probability that exactly 2 message packets arrive in a 2 millisecond
interval?

Solution to (a). Let a denote the expected number of packets arriving in the one
millisecond interval. It is given that

e”* =0.25.

Solving for «,
a = —In(0.25) = 1.3863.

Solution to (b). According to the Poisson distribution, this probability would be
axe = a/4=0.3466.
Solution to (c¢). The expected number of arrivals in a 2 millisecond interval would be
200 = 2.7726.

The number of arrivals in a 2 millisecond interval can therefore be modeled as a Poisson RV
with parameter 2.7726. The probability of exactly 2 arrivals would then be

(2.7726)% % e=27720 /2 = (0.2402.



3 Expected Value

Problem 4.1: Suppose three events A, B, C satisfy:

P(ANB)=P(ANC)=P(BNC)=0.3
P(ANnBNC)=0.18

Let random variable X be the number of events A,B,C which occur on the performance
of the experiment. (The possible values of X are obviously 0, 1,2,3.) Determine the
expected value of X (the mean of X).

Solution. Using the Venn diagram

A B

e
AVETA

Cc

we obtain

P [X=0] P(1)= 0.22

P[X=1] = P(2)+P(7)+P(8)= 0.24

P[X=2] P(3)+P(4)+P(6) = 0.36

P[X=3] = 0.18

E[X] = 0%(0.22) + 1%(0.24) + 2*(0.36) + 3*(0.18) = 1.5

Problem 4.2: A discrete random variable X has the PMF

01, =1
0.2, =2
px(@) =9 g3 4=
04, z=4

Compute the variance of X.



Solution.

E[X] = [1234]e[1.2.3.4=3
E[X? = [14916]e[1.2.3.4 =10
Var[X] = E[X?] - (E[X])?*=1

Problem 4.3: Let the continuous random variable X be uniformly distributed in the inter-
val [0,1]. Let Y be the random variable Y = v/X.

(a) Find the median of Y.
(b) Find the mean of Y.

Solution to (a). The median of YV is the constant C' such that
PY <(C]=1.

Since

PlY < C]=P[X'? < (C]=P[X <% =1/2,

C® must be halfway between 0 and 1. This yields C* = 1/2, and therefore C' = 1/v/2.
Solution to (b).

E[Y] = E[X'?] = /01 o' fy (x)dw = /1 o 3dr = 3/4.

0

Problem 4.4: The discrete random variable X takes the values —3, —-2,—1,0,1,2, 3 with
equal probability. Compute the mean and variance of the random variable Y = | X|+X.

Solution.
ElY]=FE[|X|+X]=(1/D[(3-3)+(2=2)+(1—=1)+(0+0)+(1+1)+(24+2)+(3+3) = 12/7.

E[Y? = E[(|X]|+ X)?] = (1/7)(2* + 4* + 6*) = 8.
Var[Y] = E[Y?] — pi = 8 — (12/7)* = 5.06.

Problem 4.5: A target filling up the entire back of a state fair booth looks like the following:



A player gets to throw one ball at the target and is guaranteed to hit the target (because
in worst case it will bounce off the floor or walls and hit the target the first time, which
is the time that counts). At the point where the ball hits the target, a sensor activates,
awarding a certain number of tickets to the player (who can accumulate tickets to
obtain a kewpie doll).

e 100 tickets are awarded if the ball bits inside a triangle;

e 50 tickets are awarded if the ball hits inside a circle but outside a triangle;

e 20 tickets are awarded if the ball hits anywhere else in the target.
Assume that the player is not a very good player and is therefore equally likely to
hit anywhere on the target. Assume that the rectangle is 8 feet by 6 feet, that the
triangles are equilateral 2 feet on each side. and that the circles are of diameter 3 feet.

Compute the expected number of tickets that the player will win upon throwing the
ball just one time.

Solution. Let X be the number of tickets the player wins (on the throwing of one ball).

Each of the 3 triangles has area /3, so the area of the 100 ticket region is 3v/3. Dividing
this by the total area of 48, we get

3V3
px(100) = 4—‘8[ = 0.10825

Each of the two circles has area 2.257 and contains a triangle of area /3. Therefore, the
total area of the 50 ticket region is 2(2.257 — v/3). This gives us

2(2.25m — V/3)

= 0.22236.
48

There is only one probability left:

px(20) =1 — pyx(100) — px (50) = 0.66939.
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We conclude that

E(X) = 100 * (0.10825) + 50 * (0.22236) -+ 20 * (0.66939) = 35.33.

Problem 4.6: A discrete random variable X has values +3, £2, +1. Its PMF looks like

R (X)

The variance of X is 13/3. Find a and b.

Solution. The PMF probabilities must add up to 1. This yields the equation
da+2b=1
The mean is zero (symmetry). Therefore
E[X?] =13/3 = 2[a + 4b + 9a] = 2[10a + 4b]
Solving this equation simultaneously with the previous equation yields

= 1/12
b= 1/3

Problem 4.7: A multiple-step experiment is represented by the following tree:
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Find the expected number of steps of the experiment.

Solution. The probability there is one step is 1/3. The probability there is two steps
is

(1/3)(1/4) + (1/3)(3/4) + (1/3)(1/2) = 1/2
The probability there is three steps is

1—(1/3) - (1/2) = 1/6

So, the expected number of steps is

I (1/3)+2%(1/2)+3%(1/6) =11/6

4 Conditional Distributions

Problem 5.1: A fair coin is flipped. A random variable Y is determined on the basis of
this coin flip as follows.

e If the coin is heads, then the conditional density of Y is y/8 for 0 < y < 4 (zero
elsewhere).

e If the coin is tails, then Y = 6.

Compute the following:
(a
(b

(c
(d

E[Y]0 <Y <A4],E[Y?]0 <Y <4].
E[Y], E[Y?].

VarlY].

What is the density of Y7

N~ = e
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Solution to (a). The conditional density of Y given 0 < Y < 4 is the density given
when the coin is heads. Therefore,

B0 <Y <4 = [ ylu/$)dy=5/3

EY20<Yy <4] = /04 V2 (y/8)dy = 8

Solution to (b). Either event {Y = 6} occurs (coin is tails), or event {0 < Y < 4}
occurs (coin is heads), each event occuring with prob 1/2. Therefore,

E[Y] = (1/2)E[Y]|0 <Y < 4]+ (1/2)E[Y|Y = 6] = (1/2)(8/3) + (1/2)6 = 13/3
E[Y?] = (1/2)E[Y?|0 <Y < 4]+ (1/2)E[Y?]Y = 6] = (1/2)(8) + (1/2)36 = 22
Solution to (c).
Var[Y] = E[Y?] — 3 = 22 — (13/3)* = 3.22.

Solution to (d). Take 1/2 times the cond density of Y when the coin is heads plus 1/2
times the cond density of Y when the coin is tails. This gives

fr(y) =1/2[(y/8){uly) — uly = 8)}] +1/2[6(y — 6)],

meaning that Y has a mixed distribution. (We could have computed the mean and variance
of Y directly from this density instead of the method used in parts (a)-(c), but that would
have been a bit messier.)

Problem 5.2: A random variable X has the PDF
1/4, 0< <2
fx(@)=191/2, 2<2<3
0, elsewhere

Use conditional distributions to do all the following computations.
(a) Compute P[0 < X <1/0 < X <2].

(b) Compute E[X|0 < X < 2].

(c) Compute F[X[2 < X < 3].

(d) Compute E[X].

Solution to (a). Given 0 < X < 2, X is conditionally uniformly distributed on that
interval. Automatically, we can therefore say that

PO<X<10< X <2]=1/2.
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Solution to (b) and (c¢). Given 0 < X < 2, the cond mean must be the midpoint of
interval [0,2] (since this cond dist is uniform). Therefore,

EXj0<X <2]=1.
Similarly, we automatically have
F[X]2 < X <3]=25.
Solution to (d).
EX]=P0< X <2EX|0< X <2]4+P2< X <3|F[X[]2< X <3

Plugging in, we get
(1/2) %14 (1/2) x 2.5 = 1.75.

Problem 5.3: A discrete random variable X has the following PMF function px (z):

R

0.4

0.3

0.2

0.1

(a) Let By be the event By = {X > 2}. Plot the conditional PMF pxp, (v) of X
given Bj.

(b) Let B; be the event By = {2 < X < 3}. Plot the conditional PMF pxp,(z) of X
given B,.

Solution to (a). Remove the values of X not satisfying the condition, and then re-
normalize the remaining probabilities so that they sum up to one.
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cond PMF

0.4/0.9
0.3/0.9
0.2/0.9
X
2 3 4
cond PMF
0.3/0.5
0.2/0.5
X
2 3

Solution to (b).

Problem 5.4: Let X be a Gaussian random variable with ux = 1 and 0% = 4. Let Z be
the random variable Z = (X — uy)/ox. Compute the conditional expected value

E[Z|0 < X <1]
using the Table on page 142.

Solution. Since Z = (X — 1)/2, we see that {0 < X <1} = {-1/2 < Z < 0}. This
gives us

E[Z0< X <1] = E[Z]-05< Z <0
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/00.5 2z(2)dz

P[-0.5< Z < 0]

/ 00.5(1 IV2m)z exp(—222)dz
3(0) = (1 = B(05))
[—(1/V27) exp(=2"/2)]Z=% 5
0.5 — (1 — 0.6915)

(1/v2m)[~1 + exp(=1/8)]
0.1915

—0.245

Q

Problem 5.5: A random variable X has the density fx(z) = e *u(x). Compute

(a) P[l < X <2|X <4]
(b) E[X|X < 4]
(c) Var[X|X < 4]

Solution of (a). Letting B be the event B = {X < 4}, we have
2
Pl< X <2|X <4]= / fx|s(x)dw
1
Substituting

_ ) Ix(@)/P[B], 0<z<4
fXB(x)—{ x 0, elsewhere

in (1), we have
2
/ e “dx
Pl<X<2X<4] = 2L ——

= —F =.2329

Solution of (b).

BIX|X <4] = /:cfX‘B(x)dx

4
/me‘xd:c
0
Z
/e’xd:v
0
1—5e¢

— €
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Solution of (c).

/ r?e “dx
BX*IX <4] = 25—
/ e “dx
0
Var[X|X <4] = E[X?|X <4]— (B[X|X < 4])?

The reader is invited to finish the above calculation himself/herself.

5 Moment Generating Functions

Problem 6.1: The moment generating function for a RV X is

Compute ux and o%.

Solution. The first derivative is

(2 —s)%

Evaluating this at s = 0, we get the mean:

pux = 3/2.
The second derivative is 96
(2-5)°
Evaluating at s = 0, we get E(X?):
E(X?) =3.

Therefore,
ox = BE(X?) — u% =3-9/4=3/4.

2

Problem 6.2: A random variable X has MGF
Mx(s) = (1/3)e™ + (2/3)e*.

Compute the mean and variance of X.

17



Solution. The first derivative of the MGF is

—e7% 4 (4/3)e.

Plugging in s = 0, we see that the mean is
ux =—1+(4/3) =1/3.

The second derivative of the MGF is

3e7% 4 (8/3)e™.
Plugging in s = 0, we obtain the second moment:

E[X?* =3+ (8/3) =17/3.

We can now compute Var[X]:

Var[X] = E[X? — p3 = 17/3 — (1/3)* = 50/9.

Problem 6.3: A binomial random variable X has MGF
My (s) = (pe" +1 - p)™.
Show that the mean and variance are np and np(1 — p), respectively.
Solution. Differentiating one time, it is easy to see the relationship:
(pe® + 1 —p) M (s) = npe* Mx(s).
Plugging in s = 0, and using the fact that My (0) = 1:
px = My (0) = np
Differentiating again,
(e’ + 1 = p)Mx(s) + pe" M (s) = npe’ (Mx (s) + M (s)),

and so
My (0) +pM(0) = np(1 + Mx(0)).

Putting in M% (0) = np, this simplifies to
B[X?] = M%(0) = np(1 + np) —np”.
Subtracting off (np)?, the square of the mean, you get

Var[X] =np — np* = np(1 — p).
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Problem 6.4: A Poisson random variable X has MGF
Mx(s) = exp(ae® —1).
Show that the mean and variance are both a.
Solution. The first derivative yields
M (s) = ae’Mx(s).
Plugging in s = 0 immediately yields
pux = My (0) = aMx(0) = a.
Differentiating one more time:
M5 (s) = ae’(Mx(s) + M (s)).

Then:
E[X? = M¥(0) = a(1 + M5 (0)) = a(l + o).

Subtracting o, the square of the mean, we get
Var[X] = a,

too.

Problem 6.5: A Gaussian random variable X has MGF
Mx(s) = exp(us + 0°s%/2).
Show that the mean and variance are respectively equal to u, 0.

Solution.
M (s) = (u+0°s)Mx(s),

and then
px = My (0) = pMx(0) = p

is immediate. Differentiating again:
MY (s) = 0*Mx(s) + (p + o°s) M (s).

E[X? = MY (0) = 0 Mx(0) + puM5(0) = o2 + 2.

Subtracting off 12, the square of the mean, we obtain

Var[X] = (o? + p?) — pi = 0.
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