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Let L; be the event that Joe played the lottery on week 7, and let W; be the event that
he won on week i. We are asked to find

P(Wf | Li)P (L) _ (1—q)p =
P(W¢ | Li)P(L;) + P(Wf | LE)P(LE)  (1—q)p+1-(1—p) [P

P(Li | W) =

Conditioned on X, Y is binomial

<z>qy(1—q)(’”y) 0<y<=z

0 otherwise

PY|X(C’J |z) =

Realizing that X has a binomial PMF, we have

pxy(z,y) = pyx(y|z)px(x)
_ (Zj)qy(l—Q)(m‘y) ( . )pz(l—p)(”‘m) 0<y<z<n
0 otherwise

Using the result from (c), we could compute

@) =3 pxr(ay)
z=y

but the algebra is messy. An easier method is to realize that Y is just the sum of
n independent Bernoulli random variables, each having a probability pg of being 1.
Therefore Y has a binomial PMF:

Py (y) = <Z>@®”Lﬂm“y)OSy5n

0 otherwise.

pX,Y(HU, y)
py(y)

( z >qy(1q)(w”< Z )p””(lp)(”””)
( 0<y<z<n
n

PX|Y($ ly) =

(pq)¥ (1—pq) (™~

0 otherwise

(f) GivenY =y, we know that Joe played y weeks with certainty. For each of the remaining

n — y weeks that Joe did not win there are z — y weeks where he played. Each of these
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events occured with probability P(L; | Wf) (the answer from part (a) ). Using this logic
we see that that X conditioned on Y is binomial:

pxy(T|y) = ( T—y ) <1—pq) (1 1—pq) 0<y<z<n

0 otherwise

After some algebraic manipulation, the answer to (e) can be shown to be equal to the
one above.

We know that the total length of the edge for red interval is two times that for black
inteval. Since the ball is equally likely to fall in any position of the edge, probability of
falling in a red interval is %

Conditioned on the ball having fallen in a black interval, the ball is equally likely to fall
anywhere in the interval. Thus, the PDF is

= 2€[0 5]

f z|black interval(?) = { 0 , otherwise

Since the ball is equally likely to fall on any point of the edge, we can see it is twice as

likely for z € [0, ) than z € [%, 21%] Therefore, intuitively, let

2h , z€[0,%F)

fz(z)=q h , z€ [%’%T]
0 , otherwise
Using the fact that [0 fz(z) =1,
r r )
2h)(— M(—=)=1 - =
W) + (W) =15h ==
10 s
a0 z € [0, l_g)
faz) =4 2, ze %, 2]
0 , otherwise

The total gains (or losses), T', equals to the sum of all X, i.e. T'= X7 + Xo+ -+ X,
Since all the X;’s are independent of each other, and they have the same Gaussian
distribution, the sum will also be a Gaussian with

E[T] = E[X1] + E[Xs] + -+ + E[X,] =0

var(T) = var(X1) + var(Xy) + -+ + var(X,) = no?

Therefore, the standard deviation for T is y/no.

P(|T| > 2y/no) = P(T > 2y/no)+ P(T < —2y/no)
= 2P(T > 2y/no)
2(1 — o2/~ FIT))

orT
= 2(1—®(2)) ~0.0454.
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3. (a) Y = g(X) = sin(§X). Because g(r) is a monotonic function for —1 < z < 1, we can

define an inverse function h(y) = Qarc% and use the PDF formula given in lecture:

dh
) = fxn) | 52| por —1<y <1
2arcsiny 2
= fx >
m /1 -y
1 2
2 a1 2
_ 1
/12
The final answer is:
0 y < —1
1
frly) = i/ 1—y2 —1<y <l
0 1<y

Y =sin(27X). In rearranging the equation, we find X = %. This is a many-to-one
mapping of X to Y. That is, given a value of Y, it is not possible to pinpoint the
corresponding value of X. For example, if Y = 1, X could have been  or =2. This

means we cannot use the formula used in part (a). ! !

The CDF is still the means to achieving the PDF, but we take a graphical approach
instead. First, let’s consider the extreme cases. By virtue of the sin X function, the
value of Y varies from -1 to 1. It is obvious that no value of the random variable Y
can be less than -1, so Fy(y < —1) = 0. Also, every value of Y is less than 1, so
Fy(y>1) =1

For —1 < y <0, consider the following diagram:
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y = sin(2*pi*x) for -1 <x < 1

y value
o
QO

0.4

-0.2 1 ! 1 1
-1.5 -1 -0.5 0 0.5 1 1.5

The value b indicates the conventional response of arcsiny which is between [—F, 7]. In
other words, by rearranging the original equation:
b arcsiny

2m
<b<

[y

IS

1

So, we now have Fy(y) = P[(a < X <b) U (c < X < d)], where the event on the right
is the shaded region in the above PDF of X. By symmetry, and mutual exclusivity, this
shaded region can be expressed as four times the more darkly shaded region of the PDF.

Fy(y|-1<y<0) = Pla<X<bU(c<X <d)
= 4P(—; <X <)

= 105)b - (-]

arcsiny L 1

T 2’

For 0 <y <1, consider the following diagram:
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y = sin(2*pi*x) for -1 <x < 1

0.6

0.4

|
|
|
|
|
|
= 0.2 :
|
T
|
|

0

-0.2f L

-1.5 -1 -0.5

0.5 1 1.5

By an analogous argument to the previous case, we find that Fy(y|0 < y < 1) is
represented by the shaded region from —1 to d, a to b, and ¢ to 1. Once again, however,
this is exactly four times the more darkly shaded region from —% to b. So, the expression
for the CDF is the same as in the case —1 <y < 0.

arcsiny n 1

Fy(yo<y<1l) = - 3

To summarize:

0 y< -1

Fy(y) = { 2S04l 1<y<l
1 1<y

Now use the identity j—y arcsiny = 11 = and differentiate with respect to y:
-y
i 0 y < —1
1
W) = P = s 1sv<l
0 1<y

4. (a) Let K = the number of arrivals in the three-hour period in consideration, and M; =
the size of the ith arrival group, which includes the user of the mailbox plus his or her
accompanying friends. Thus, M; = N; + 1. We can express Y as

Y=M+M+---+ Mkg.
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Y is a random sum of random variables. Using iterated expectations:

E[Y] = E[E[Y|K]| = E[K]E[M] = E[K](E[N] +1).

Using the moment-generating property of transforms:

dMpy(s)

ds s=0
= 1/3+2/6
— 2/3,

E[N] =

K is Poisson with rate A over an interval of length 3, so E[K] = 3A. Combining everything:

(b) We use the Pascal PMF:

P(Exactly 3 parcels arrive by the time the 5th letter arrives)
= P(the fifth letter arrives at time 8)

= P(the first 7 arrivals consists of exactly 3 parcels, and 4 letters, and the 8th arrival is a letter)

(O >‘*§
-[G)o'e

(¢) We use the binomial PMF:

P(Exactly 3 out of next 8 users will mail parcels)
_ 8 ) (1)%(2)°
- ()

(d) Let M be the size of the group to which any person belongs. M = N + 1, the number of
accompanying friends plus the person himself).

My (s) = E[e" ™+ = ¢ My(s) = %es + %625 + %635
Note that, using part b), E[M] = E[N] +1 = 5/3. Also pu(1) = L Mu(s)|es=o = 1/2.
The key observation to this problem is that we are actually dealing with random incidence.
Imagine we line everyone up (both users and non-users), with people coming from the same
group standing next to their accompanying friends. Suppose now that we pick a person i at
random from this line. Let W be the size of the group to which ¢ belongs. The probability
that W = w (i.e., the probability that she is from a group of size w) is the same as the
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probability that the gap into which we enter a process by random incidence is of duration w.
This problem is similar to question 1d) from problem set 9. The probability that a group of
a certain size, w, is chosen is

o) = 222

In particular, py(1) is the probability that a randomly selected person 7 is the only person
in the group, i.e., he or she is unaccompanied. Therefore:

P(a randomly selected person is accompanied)

= 1 — P(a randomly selected person is not accompanied)
= 1-pw(1)

- [7w0]

(e) As in part (a), define Y = the total number of people arriving in one hour, K = the
number of arrivals in one hour, and @); = the size of the ith arrival group. We can express Y
as:

Y=0Q:1+Q2+ -+ Qk.

where the ();’s are independent and identically distributed. The transform of Y is:

My(s) = E[e*]

= E[e’%1es@2 | 59K]

= E[B[ees? .. 9| K]

= E[(Mq(s))¥]

= MK(3)|es:MQ(s)

= MK(S)|es:%es+%e2s+%63s (1)

K is a Poisson random variable with parameter A, so:

MK(S) = e’\(6871).

Plugging in:

My (s) = AT TEF D)

To get the actual closed-form PMF, if it exists at all, one must invert the transform My (s)
above — a very difficult task. The lesson here is that for random sums of random variables it
is usually much easier to get their transforms than their PMF's.

(f) Let us select a time in this Poisson process by random incidence. The time from our
random entry to the arrival of the future fifth user is:

X1+ + X5

where the X;’s are i.i.d. exponential random variable with mean 1/\. Also, the time from
the random entry to the previous third user would be:

X 3+X o+X
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where each X;’s are once again independent exponential random variables with mean 1/A.
So, T, the duration between the arrival of third previous users and the fifth future user would
be

T=X3+X o+ X 1+X1+---X5

Hence, we have

Mr(s) = (Mx(s))"
- )]

Note that pr(t) corresponds to the PDF of an Erlang random variable of order 8, i.e. the
time until 8 arrivals in a Poisson process.

. a) Assume Mary’s goal is not to maximize her total profit but to simply maximize the prob-
ability she acquires $400. We calculate the simple cases first. The easiest decision is when
Mary has $100. She must bet $100 because she can’t bet $200.

When Mary has $300, she should bet $100. Whether she bets $100 or $200, she will meet her
goal if she wins the next game. If she bets $100 and loses, she will then have $200. If she bets
$200 and loses, she will then have $100. Everything else being equal, it’s more advantageous
to have $200 than to have $100.

The more difficult decision is how much to bet when Mary has $200. We’ll investigate both
possible strategies and decide which is preferable.

First, Mary can bet $200. This case is easy to analyze. She will either win the desired amount
or go “bust” on the next game. The probability that she will win is p.

Second, Mary can bet $§100. In this case, we have the following state transition diagram.

1 p p P 1
I-p I-p 1-p

Winning and going “bust” are the two absorption states, and we want to find the probability
of eventually winning, given that she starts with $200. We will denote the probability that
Mary wins given that she starts with ;7 hundred dollars by a;.

a1 = azp
az = ai(l—p)+asp
a3 = ax(l—p)+p

A few simple substitutions yield the following.

p2

T 2

We need to compare p and a9 to determine which strategy is optimal. Solving for the condition
2
P

such that p > ao = T2p72° yields that betting $200 is advantageous when p < 1/2 and
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6.

betting $100 is advantageous when p > 1/2. When p = 1/2 neither strategy is better than
the other.

b) With p = .75, the optimal strategy is for Mary to bet $100 when she has $200. We need
to find the expected time until absorption, given that Mary started with $200.

Let p; = E(number of transitions to absorption starting from #($100)). We know that uo = 0
and ps = 0 because these are absorption states. We have the following relationship to
determine the other u;’s.

3
pi =14 piji
j=1
So, we get the following three equations.
pi = 1+pus
pe = 1+ (L—p)u +pps
ps = 14+ (1 —-pue

We need to solve for ps. Inserting p = .75, we get the following values for ;.

M1 = 3.4
pa = 3.2
M3 = 1.8

Therefore, the answer is .

(a)

When we merge the arrival process of wombats, which is Poisson with rate 2, with the
arrival process of dingos, which is Poisson with rate 4, we get a Poisson process with
rate 6 that represents arrivals of animals. The expected number of arrivals in a 24-hour
period is just 6(24) = 144.

The Poisson process is memoryless, so the fact that a wombat is currently drinking

doesn’t matter. The probability that the next animal is a dingo is ﬁ = %

Note that there is a possibility that Crocodile Dundee will arrive to the water hole at first
and see a dingo. In the case, the amount of time he’ll have to wait is 0. Otherwise, he’ll
have to wait until one arrives, and the amount of time he’ll have to wait is exponential
with rate 4. Let w4 denote the probability that when Crocodile Dundee arrives he sees
a dingo at the water hole and m, denote the probability he sees a wombat. Because
the series of arrivals preceding the moment when Crocodile Dundee arrives also form a
Poisson process (i.e. we can look at the arrivals in reverse and the interarrival times are
still exponential), we have from part b) that 74 = % and T, = %
If we denote the amount of time until he sees a dingo as X, we have
E[X] = E[X|he arrives to hole occupied by a dingo|P(occupied by dingo) +
E[X|he arrives to hole occupied by a wombat]P(occupied by wombat)
= (0)wq + E[exponential(4)]my
1
12
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(d) We again need to condition on who is occupying the hole when he arrives. Note that if

Crocodile Dundee arrives at the water hole and a dingo is occupying the hole, the total
amount of time that dingo spent at the hole is in fact Erlang order 2 by the random
incidence phenomenon (there’s an exponential amount of time left from when Crocodile
Dundee arrives until another animal arrives, and there’s an independent exponential
amount of time from when the dingo first arrived to when Crocodile Dundee arrives). If
Crocodile Dundee arrives when the hole is occupied by a wombat, then when the first
dingo does come, the amount of time that dingo will spend will just be the interarrival
time of a Poisson process of rate 2+4, which is exponential(6). So if we call the amount
of time spent by the first dingo seen by Crocodile Dundee Y, we have:

E[Y] = E[Y|he arrives to hole occupied by a dingo|P(occupied by dingo) +
E[Y |he arrives to hole occupied by a wombat]P(occupied by wombat)

= E[Erlang — order2(6)|my + Elexponential(6)]my
5
18
Let Y be the expected number of hours Crocodile Dundee spends at the water hole. Y
is a sum of 900 independent interarrival times, each with an exponential distribution
with parameter 6. The expected value of each interarrival times is é, and the variance
of each is gz = 35. Therefore E[Y] = 900(3) = 150 and Var(Y) = 900(z;) = 25.
P(140 < Y < 160) = P(]Y — 150| < 10) = P(]Y — E[Y]| < 10).
By Chebyshev’s inequality, P(|Y — E[Y]| > 10) < % = 2 = L so the probability that

Crocodile stays at the water hole for between 140 and 160 hours is at least 1 — }I = %.

Since Y is a sum of 900 independent, identically distributed random variables, the Cen-

tral Limit Theorem implies that the cdf of % can be approximated by the cdf of
X ~ N(0,1), so

Y — 150]
— <

P(lY —150| < 10) :P< :

2) N P(=2 < X <2) = 2(B(2) — .5) — .954.

The probability that Crocodile stays at the water hole for between 140 and 160 hours is
therefore approximately .954.
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