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Problem 1. (44 points) The given PDF for X conveniently corresponds to a random choice between 
two equally-likely standard random variables: event A corresponding to X being exponential and event B 
corresponding to X being Erlang of order 2, both cases with parameter λ. 

(a) (4 pts) Using the Law of Iterated Expectations, 

1 1 2 1 3 
E[X] = E[X | A]P(A) + E[X | B]P(B) = · + · = 

λ 2 λ 2 2λ 

(b) (4 pts) We could use the Law of Total Variance, but we also know var(X) = E X2 − (E[X])
2 

where 
we’ve already found E[X] above. Again using the Law of Iterated Expectations, 

� �2 � �2 
� � � � � � 1 1 1 2 2 1 4 

E X2 = E X2 | A P(A) + E X2 | B P(B) = 
λ2 

+ 
λ 2

+ 
λ2 

+ 
λ 2

= 
λ2 

� �2
4 3 7 

⇒ var(X) = 
λ2 

− =
4λ2 

. 
2λ 

(c) (5 pts) The event {N10 = 0}, or zero arrivals during the time interval [0, 10), is equivalent to the first 
arrival time X1 being greater than 10. Using the hint to aid with the integration, 

∞ ∞1 ∞ 

P(N10 = 0) = P(X1 > 10) = fX (x)dx = λe−λxdx + λ2 xe −λxdx 
10 2 10 10 

1 � ��∞ 
= −e −λx + (−λx − 1)e −λx 

� 
10 

= (5λ + 1)e −10λ 

2 
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where we have concluded that limx→∞ λxe−λx = 0 by L’Hopital’s Rule. 

(d) (i)	 (6 pts) No. While the process does renew itself at each arrival instant, in the sense that at the 
instant of an arrival the PDF fX (x) characterizes the time until the next arrival, the PDF fX (x) 
does not characterize the time of the next arrival starting from any arbitrary time instant t. 
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Of all distributions discussed in this class, only the exponential and geometric distributions for 
first-order interarrival times yield a memoryless process, and it’s unlikely that there are others. 

Aside: To appreciate this, a rather sophisticated argument is as follows. Memoryless implies that, 
given an arrival has not occurred by time t > 0, the distribution describing the time beyond t 
until the next arrival is identical to the original interarrival distribution—mathematically, letting 
Y = X − t, we’ve just stated that memoryless requires fY |X>t(x|X > t) = fX (x) for any 
t > 0. Working first with CDFs to express the conditional distribution in terms of the original 
distribution, and then differentiating with respect to x to express the relationship in terms of 
PDFs, we obtain 

P({X ≤ x + t} {X > t})
FY |X>t(x | X > t) = P(X − t ≤ x | X > t) = 

P(X > t) 

FX (x + t) fX (x + t) 
= ⇒ 

P(X > t) 
fY |X>t(x | X > t) = 

P(X > t) 

Hence, if fX (x) is a functional form where a shift by t is cancelled when dividing by the probability 
that X > t, then the process is memoryless (a property arguably unique to exponential functional 
forms). For example, consider fX (x) of this problem and t = 10 to leverage the answer of part 
(c): 

1 λe−λ(x+10) + λ2(x + 10)e−λ(x+10) 1fX (x + 10) 2 2 λe−λx + λ2(x + 10)e−λx 

= = 
P(X > 10) (5λ + 1)e−10λ (5λ + 1) 

1 λe−λx + λ2xe−λx + λ210e−λx fX (x) + λ25e−λx 

= 2 = �= fX (x)
(5λ + 1) (5λ + 1) 

So it follows that, because fY |X>t(x|X > t) �= fX (x) for at least one value of t, the arrival 
process is not memoryless. 

(ii)	 (5 pts) For a memoryless process, we know (by the arguments in the text) that E[W ] = 2E[X]. 
For a process that is not memoryless, we rely on the general formulas (see solutions to Recitation 
10) relating W to X and use the answers from parts (a) and (b): 

wfX (w) E X2 
λ 
4 
2 8 

fW (w) = 
E[X] 

⇒ E[W ] = 
E[X]

= 3 = 
3λ

2λ 

(e) We are given that TK = X1 + X2 + . . . XK where K is the sum of six independent and identically-
1distributed Bernoulli trials, each with success probability 2 . 

1(i) (4 pts) Thus, K is described by a binomial distribution with parameters n = 6 and p = 2 , and 
3therefore E[K] = np = 3 and var(K) = np(1 − p) = 2 . 

(ii) (4 pts) TK is a sum of a random number of independent random variables, so 

9 69 
E[TK ] = E[X]E[K] = and var(TK ) = var(X)E[K] + (E[X])2 var(K) = 

2λ 8λ2 

(f) Define the sample mean by Mn = (X1 + X2 + . . . + Xn)/n and let µ = E[X]. 

(i)	 (6 pts) Note that P(An) = P(|Mn − µ| ≥ 10−6) and so, by the WLLN where � = 10−6 , 
limn→∞ P(An) = 0. 

(ii)	 (6 pts) Note that P(limn→∞ Bn) = P(limn→∞ Mn �= µ) = 1 − P(limn→∞ Mn = µ) = 0 because, 
by the SLLN, P(limn→∞ Mn = µ) = 1. 
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Problem 2. (54 points) A state transition (not necessarily a change-of-state) occurs every hour, on the 
hour. Though self-transitions are not explicitly shown, because the sum of all transition probabilites from a 
state i must be one, we deduce p00 = 0.50, p11 = 0.30 and p22 = 0.36. 

(a)	 (6 pts) A self-transition in state 0 corresponds to the cafe being empty and no passengers arriving on 
the next shuttle, which occurs with probability pK (0) = p = p00 = 0.5 ⇒ p = 0.5. A transition from 
state 1 to state 0 corresponds to the single customer ending the session and no passengers arriving on 
the next shuttle, which by independence occurs with probability q · pK (0) = qp = p10 = 0.4 ⇒ q = 0.8. 

Aside: While it is possible to deduce from the problem description that 

∞ 

p01 = p(1 − p), p02 = p(1 − p)k = (1 − p)2 , p11 = qp(1 − p) + (1 − q)p = p(1 − qp), 
k=2 

∞ ∞ 

p12 = q p(1 − p)k + (1 − q) p(1 − p)k = 1 − p(1 + q − qp), p20 = q 2 p, 
k=2 k=1 

2 2 
p21 = q p(1 − p) + q(1 − q)p = qp(2 − q(1 + p)),

1 
∞ ∞ 

2 
p22 = q 2 p(1 − p)k + q(1 − q) p(1 − p)k + (1 − q)2 = 1 − qp(2 − qp)

1 
k=2 k=1 

and then equate any subset of the above transition probabilities to the values in the graph to solve for 
parameters p and q, it is clearly more effort than simply using p00 and p10. 

(b)	 (6 pts) The chain forms a single recurrent class and is aperiodic; thus, the steady-state probabilities 
satisfy the equations 

π0 = 0.50π0 + 0.40π1 + 0.32π2 

π1 = 0.25π0 + 0.30π1 + 0.32π2 

π2 = 0.25π0 + 0.30π1 + 0.36π2 

Combining any two of these equations with π0 + π1 + π2 = 1 yields, after some algebra, π0 = 421 , 
120 125π1 = 421 , and π2 = 421 . 

(c)	 (8 pts) Let X5 and X6 denote the state just after 5am and 6am, respectively, and note that after 
months of operation we can safely assume that P(X5 = i) ≈ πi: 

P(X6 > X5 | X6 �= X5) = 
P(X6 > X5 X6 �= X5) P(X6 > X5) 

= 
P(X6 �= X5) P(X6 �= X5) 

�2 
i=0 P(X6 > X5 | X5 = i)πi 0.50π0 + 0.30π1 31 

= 
�2 = = 

i=0 P(X6 �= X5 | X5 = i)πi 0.50π0 + 0.70π1 + 0.64π2 63 

(d)	 During an hour when the cafe is empty (i.e., state 0), zero messages are generated; during an hour 
when the cafe has a single customer (i.e., state 1), messages are generated at a Poisson rate of λ per 
hour; during an hour when the cafe has two customers (i.e., state 2), messages are generated at a 
Poisson rate of 2λ per hour. 

(i)	 (8 pts) Let X10 denote the state just after 10am and, again assuming the process is in steady-state, 
we have P(X10 = i) ≈ πi. Letting event Ai = {X10 = i} and noting that we are interested in the 
number of Poisson arrivals in τ = 0.5 hours, 

 
2 

 π0 + π1P(N = 0 | A1) + π2P(N = 0 | A2) , n = 0 
pN (n) = πiP(N = n | Ai) = 

P(N =n|A1 ) P(N =n|A2 )
 

i=0 π1 P(N �=0|A1 ) + π2 P(N �=0|A2 ) , n = 1, 2, . . . 
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

 π0 + π1e

−0.5λ + π2e
−λ , n = 0


= 
π1 

(0.5λ)n e −0.5λ 
λn e −λ 

 
1−e−0.5λ + π2 1−e−λ , n = 1, 2, . . . 

(ii)	 (10 pts) By definition of a Poisson process, the time until each individual customer generates a 
first message is an exponential random variable with parameter λ. Given also that each customer 
generates at least one message in the hour, an event with probability 1 − e−λ , the conditional 
PDF characterizing the arrival time Z of a customer’s first message becomes 

λe−λz 

fZ (z) = 
1 − e−λ 

, 0 < z < 1 . 

Note that random variable Y = max{Z1, Z2}, where Z1 and Z2, denoting the time until customer 
1 and 2, respectively, generate their first messages, are independent and identically distributed 
with PDF fZ (z). We now derive the PDF for Y by first relating its CDF to random variable Z 
and then taking the derivative: 

FY (y) = P(Y ≤ y) = P(max{Z1, Z2} ≤ y) = P(Z1 ≤ y Z2 ≤ y) 

= P(Z1 ≤ y)P(Z2 ≤ y) = P(Z ≤ y)2 = [FZ (y)]
2 

d 1 − e−λy λe−λy 

⇒ fY (y) = 
dy 

[FZ (y)]
2 

= 2FZ (y) · fZ (y) = 2 
1 − e−λ 1 − e−λ 

2λe−λy (1 − e−λy ) 
= 

(1 − e−λ)2 
, 0 < y < 1 . 

(e) (i) (8 pts) Let L be the number of prizes awarded during the promotion. The owner’s requirement 
4states P(L = 150) ≥ 0.8 = 5 . We view the promotion as a Bernoulli process, where a success on 

the wth trial corresponds to a prize being awarded in the wth week. Thus, each Bernoulli trial Xw 

has success probability α. The promotion lasts W = min{Y150, 200} weeks, where Y150 denotes 
the number of trials until the 150th success (characterized by a Pascal PMF of order 150). It 
follows that 

L = X1 + X2 + . . . + XW ≤ X1 + X2 + . . . + X200 ⇒ E[L] ≤ 200E[Xw ] 

so, combining the boss’s requirement with the Markov inequality (and noticing that L can be at 
most 150), 

4 E[L] 200E[Xw ] 4α 3 4 3 
≤ P(L = 150) = P(L ≥ 150) ≤ ≤ = ⇒ α ≥ · = 

5 150 150 3 4 5 5 

(ii)	 (8 pts) In a full week, there will be 24 · 7 = 168 shuttle arrivals, with the ith shuttle delivering 
Ki passengers where the Kis are independent and identically distributed. The total number of 
passengers in any week is then 

N = K1 + K2 + . . . K168 ⇒ E[N ] = 168E[Ki] and var(N ) = 168var(Ki), 

where E[Ki] = 1 − 1 = 1−p and var(Ki) = 1−p . We wish to choose n no greater than the value 
p p p2 

at which P(N ≥ n) = α. Using a CLT approximation, with the DeMoivre-Laplace correction to 
account for N being discrete, 

2 − E[N ]N − E[N ] n − E[N ] n − 1 

P(N ≥ n) = P � ≥ � ≈ 1 − Φ � 
var(N ) var(N ) var(N ) 

and so, in terms of parameters p and α, we choose 1 ≤ n ≤ n0 where n0 is no greater than the 
value of n that satisfies 

� � 
p(n − 1 

2 ) − 168(1 − p)
Φ	 � = 1 − α 

168(1 − p) 
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