
Probability and Stochastic Processes

Homework Chapter 12 Solutions

Problem Solutions : Yates and Goodman, 12.1.1 12.1.4 12.3.2 12.4.3 12.5.3 12.5.6 12.6.1
12.9.1 12.9.4 12.10.1 12.10.6 12.11.1 12.11.3 12.11.5 and 12.11.9

Problem 12.1.1 Solution

From the given Markov chain, the state transition matrix is

P =





P00 P01 P02

P10 P11 P12

P20 P21 P22



 =





0.5 0.5 0
0.5 0.5 0
0.25 0.25 0.5



 (1)

Problem 12.1.4 Solution

Based on the problem statement, the state of the wireless LAN is given by the following
Markov chain:

1 32

0.5 0.06 0.06

0.5 0.90.90.9

0.04

0.02
0.04

0.04

0.04

0

The Markov chain has state transition matrix

P =







0.5 0.5 0 0
0.04 0.9 0.06 0
0.04 0 0.9 0.06
0.04 0.02 0.04 0.9







. (1)

Problem 12.3.2 Solution

At time n−1, let pi(n−1) denote the state probabilities. By Theorem 12.4, the probability
of state k at time n is

pk(n) =

∞∑

i=0

pi(n − 1)Pik (1)

Since Pik = q for every state i,

pk(n) = q

∞∑

i=0

pi(n − 1) = q (2)

Thus for any time n > 0, the probability of state k is q.
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Problem 12.4.3 Solution

The idea behind this claim is that if states j and i communicate, then sometimes when we
go from state j back to state j, we will pass through state i. If E[Tij ] = ∞, then on those
occasions we pass through i, the expected time to go to back to j will be infinite. This
would suggest E[Tjj] = ∞ and thus state j would not be positive recurrent. Using a math
to prove this requires a little bit of care.

Suppose E[Tij ] = ∞. Since i and j communicate, we can find n, the smallest nonnegative
integer such that Pji(n) > 0. Given we start in state j, let Gi denote the event that we go
through state i on our way back to j. By conditioning on Gj ,

E [Tjj] = E [Tjj|Gi]P [Gi] + E [Tjj|Gc
i ]P [Gc

i ] (1)

Since E[Tjj|Gc
i ]P [Gc

i ] ≥ 0,
E [Tjj] ≥ E [Tjj|Gi]P [Gi] (2)

Given the event Gi, Tjj = Tji + Tij . This implies

E [Tjj|Gi] = E [Tji|Gi] + E [Tij |Gi] ≥ E [Tij |Gi] (3)

Since the random variable Tij assumes that we start in state i, E[Tij |Gi] = E[Tij ]. Thus
E[Tjj |Gi] ≥ E[Tij ]. In addition, P [Gi] ≥ Pji(n) since there may be paths with more than
n hops that take the system from state j to i. These facts imply

E [Tjj] ≥ E [Tjj|Gi]P [Gi] ≥ E [Tij] Pji(n) = ∞ (4)

Thus, state j is not positive recurrent, which is a contradiction. Hence, it must be that
E[Tij ] < ∞.

Problem 12.5.3 Solution

From the problem statement, the Markov chain is

1 2 43

p p p p

1-p p

1-p1-p1-p 1-p

0

The self-transitions in state 0 and state 4 guarantee that the Markov chain is aperiodic.
Since the chain is also irreducible, we can find the stationary probabilities by solving π =
π
′
P; however, in this problem it is simpler to apply Theorem 12.13. In particular, by

partitioning the chain between states i and i + 1, we obtain

πip = πi+1(1 − p). (1)

This implies πi+1 = απi where α = p/(1 − p). It follows that πi = αiπ0. REquiring the
stationary probabilities to sum to 1 yields

4∑

i=0

πi = π0(1 + α + α2 + α3 + α4) = 1. (2)
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This implies

π0 =
1 − α5

1 − α
(3)

Thus, for i = 0, 1, . . . , 4,

πi =
1 − α5

1 − α
αi =

1 −
(

p
1−p

)5

1 −
(

p
1−p

)

(
p

1 − p

)i

. (4)

Problem 12.5.6 Solution

This system has three states:

0 front teller busy, rear teller idle

1 front teller busy, rear teller busy

2 front teller idle, rear teller busy

We will assume the units of time are seconds. Thus, if a teller is busy one second, the teller
will become idle in th next second with probability p = 1/120. The Markov chain for this
system is

0 1 2

1-p p +(1-p)
2 2

1-p

1-p p(1-p)

p(1-p) p

We can solve this chain very easily for the stationary probability vector π. In particular,

π0 = (1 − p)π0 + p(1 − p)π1 (1)

This implies that π0 = (1 − p)π1. Similarly,

π2 = (1 − p)π2 + p(1 − p)π1 (2)

yields π2 = (1 − p)π1. Hence, by applying π0 + π1 + π2 = 1, we obtain

π0 = π2 =
1 − p

3 − 2p
= 119/358 (3)

π1 =
1

3 − 2p
= 120/358 (4)

The stationary probability that both tellers are busy is π1 = 120/358.
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Problem 12.6.1 Solution

Equivalently, we can prove that if Pii 6= 0 for some i, then the chain
cannot be periodic. So, suppose for state i, Pii > 0. Since Pii = Pii(1),
we see that the largest d that divides n for all n such that Pii(n) > 0 is
d = 1. Hence, state i is aperiodic and thus the chain is aperiodic.
The converse that Pii = 0 for all i implies the chain is periodic is false.
As a counterexample, consider the simple chain on the right with Pii = 0
for each i. Note that P00(2) > 0 and P00(3) > 0. The largest d that
divides both 2 and 3 is d = 1. Hence, state 0 is aperiodic. Since the
chain has one communicating class, the chain is also aperiodic.

2
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Problem 12.9.1 Solution

From the problem statement, we learn that in each state i, the tiger spends an exponential
time with parameter λi. When we measure time in hours,

λ0 = q01 = 1/3 λ1 = q12 = 1/2 λ2 = q20 = 2 (1)

The corresponding continous time Markov chain is shown below:

2

0 1

½2

1/3

The state probabilities satisfy

1

3
p0 = 2p2

1

2
p1 =

1

3
p0 p0 + p1 + p2 = 1 (2)

The solution is
[
p0 p1 p2

]
=

[
6/11 4/11 1/11

]
(3)

Problem 12.9.4 Solution

In this problem, we build a two-state Markov chain such that the system in state i ∈ {0, 1}
if the most recent arrival of either Poisson process is type i. Note that if the system is in
state 0, transitions to state 1 occur with rate λ1. If the system is in state 1, transitions to
state 0 occur at rate λ0. The continuous time Markov chain is just

0 1

l
1

l
0

The stationary probabilities satisfy p0λ1 = p1λ0. Thus p1 = (λ1/λ0)p0. Since p0 + p1 = 1,
we have that

p0 + (λ1/λ0)p0 = 1. (1)
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This implies

p0 =
λ0

λ0 + λ1

, p1 =
λ1

λ0 + λ1

. (2)

It is also possible to solve this problem using a discrete time Markov chain. One way to do
this is to assume a very small time step ∆. In state 0, a transition to state 1 occurs with
probability λ1∆; otherwise the system stays in state 0 with probability 1− λ1∆. Similarly,
in state 1, a transition to state 0 occurs with probability λ0∆; otherwise the system stays
in state 1 with probability 1−λ0∆. Here is the Markov chain for this discrete time system:

0 1

l D
1

1-l D
1

l D
0

1-l D
0

Not surprisingly, the stationary probabilities for this discrete time system are

π0 =
λ0

λ0 + λ1

, π1 =
λ1

λ0 + λ1

. (3)

Problem 12.10.1 Solution

In Equation (12.93), we found that the blocking probability of the M/M/c/c queue was
given by the Erlang-B formula

P [B] = PN (c) =
ρc/c!

∑c
k=0

ρk/k!
(1)

The parameter ρ = λ/µ is the normalized load. When c = 2, the blocking probability is

P [B] =
ρ2/2

1 + ρ + ρ2/2
(2)

Setting P [B] = 0.1 yields the quadratic equation

ρ2 − 2

9
ρ − 2

9
= 0 (3)

The solutions to this quadratic are

ρ =
1 ±

√
19

9
(4)

The meaningful nonnegative solution is ρ = (1 +
√

19)/9 = 0.5954.

Problem 12.10.6 Solution

The LCFS queue operates in a way that is quite different from the usual first come, first
served queue. However, under the assumptions of exponential service times and Poisson
arrivals, customers arrive at rate λ and depart at rate µ, no matter which service discipline
is used. The Markov chain for the LCFS queue is the same as the Markov chain for the
M/M/1 first come, first served queue:
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It would seem that the LCFS queue should be less efficient than the ordinary M/M/1 queue
because a new arrival causes us to discard the work done on the customer in service. This
is not the case, however, because the memoryless property of the exponential PDF implies
that no matter how much service had already been performed, the remaining service time
remains identical to that of a new customer.

Problem 12.11.1 Solution

Here is the Markov chain describing the free throws.

1

-4

2

-3

4

-1

3

-2

0.5

0.5

0.6

0.6

0.7

0.7

0.8

0.8

0.9

0.9

0 0.40.4 0.30.3 0.20.2 0.10.1

Note that state 4 corresponds to “4 or more consecutive successes” while state −4 corre-
sponds to “4 or more consecutive misses.” We denote the stationary probabilities by the
vector

π =
[
π−4 π−3 π−2 π−1 π0 π1 π2 π3 π4

]
′

. (1)

For this vector π, the state transition matrix is

P =

















0.9 0 0 0 0 0.1 0 0 0
0.8 0 0 0 0 0.2 0 0 0
0 0.7 0 0 0 0.3 0 0 0
0 0 0.6 0 0 0.4 0 0 0
0 0 0 0.5 0 0.5 0 0 0
0 0 0 0.4 0 0 0.6 0 0
0 0 0 0.3 0 0 0 0.7 0
0 0 0 0.2 0 0 0 0 0.8
0 0 0 0.1 0 0 0 0 0.9

















. (2)

To solve the problem at hand, we divide the work into two functions; freethrowmat(n)
returns the n step transition matrix and freethrowp(n) that calculates the probability of
a success on the free throw n.
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function Pn=freethrowmat(n);

P=[0.9 0 0 0 0 0.1 0 0 0;...

0.8 0 0 0 0 0.2 0 0 0;...

0 0.7 0 0 0 0.3 0 0 0;...

0 0 0.6 0 0 0.4 0 0 0;...

0 0 0 0.5 0 0.5 0 0 0;...

0 0 0 0.4 0 0 0.6 0 0;...

0 0 0 0.3 0 0 0 0.7 0;...

0 0 0 0.2 0 0 0 0 0.8;...

0 0 0 0.1 0 0 0 0 0.9];

Pn=P^n;

function ps=freethrowp(n);

PP=freethrowmat(n-1);

p0=[zeros(1,4) 1 ...

zeros(1,4)];

ps=p0*PP*0.1*(1:9)’;

In freethrowp.m, p0 is the initial state probability row vector π
′(0). Thus p0*PP is the

state probability row vector after n − 1 free throws. Finally, p0*PP*0.1*(1:9)’ multiplies
the state probability vector by the conditional probability of successful free throw given the
current state. The answer to our problem is simply

>> freethrowp(11)

ans =

0.5000

>>

In retrospect, the calculations are unnecessary! Because the system starts in state 0, sym-
metry of the Markov chain dictates that states −k and k will have the same probability
at every time step. Because state −k has success probability 0.5 − 0.1k while state k has
success probability 0.5 + 0.1k, the conditional success probability given the system is in
state −k or k is 0.5. Averaged over k = 1, 2, 3, 4, the average success probability is still 0.5.

Comment: Perhaps finding the stationary distribution is more interesting. This is done
fairly easily:

>> p=dmcstatprob(freethrowmat(1));

>> p’

ans =

0.3123 0.0390 0.0558 0.0929 0 0.0929 0.0558 0.0390 0.3123

About sixty precent of the time the shooter has either made four or more consecutive free
throws or missed four or more free throws. On the other hand, one can argue that in a
basketball game, a shooter rarely gets to take more than a half dozen (or so) free throws,
so perhaps the stationary distribution isn’t all that interesting.

Problem 12.11.3 Solution

Although the inventory system in this problem is relatively simple, the performance analysis
is suprisingly complicated. We can model the system as a Markov chain with state Xn equal
to the number of brake pads in stock at the start of day n. Note that the range of Xn is
SX = {50, 51, . . . , 109}. To evaluate the system, we need to find the state transition matrix
for the Markov chain. We express the transition probabilities in terms of PK(·), the PMF of
the number of brake pads ordered on an arbitary day. In state i, there are two possibilities:

• If 50 ≤ i ≤ 59, then there will be min(i,K) brake pads sold. At the end of the day, the
number of pads remaining is less than 60, and so 50 more pads are delivered overnight.

7



Thus the next state is j = 50 if K ≥ i pads are ordered, i pads are sold and 50 pads
are delivered overnight. On the other hand, if there are K < i orders, then the next
state is j = i − K + 50. In this case,

Pij =

{
P [K ≥ i] j = 50,
PK (50 + i − j) j = 51, 52, . . . , 50 + i.

(1)

• If 60 ≤ i ≤ 109, then there are several subcases:

– j = 50: If there are K ≥ i orders, then all i pads are sold, 50 pads are delivered
overnight, and the next state is j = 50. Thus

Pij = P [K ≥ i] , j = 50. (2)

– 51 ≤ j ≤ 59: If 50+ i− j pads are sold, then j − 50 pads ar left at the end of the
day. In this case, 50 pads are delivered overnight, and the next state is j with
probability

Pij = PK (50 + i − j) , j = 51, 52, . . . , 59. (3)

– 60 ≤ j ≤ i: If there are K = i−j pads ordered, then there will be j ≥ 60 pads at
the end of the day and the next state is j. On the other hand, if K = 50 + i− j
pads are ordered, then there will be i − (50 + i − j) = j − 50 pads at the end of
the day. Since 60 ≤ j ≤ 109, 10 ≤ j − 50 ≤ 59, there will be 50 pads delivered
overnight and the next state will be j. Thus

Pij = PK (i − j) + PK (50 + i − j) , j = 60, 61, . . . , i. (4)

– For i < j ≤ 109, state j can be reached from state i if there 50 + i − j orders,
leaving i − (50 + i − j) = j − 50 in stock at the end of the day. This implies 50
pads are delivered overnight and the next stage is j. the probability of this event
is

Pij = PK (50 + i − j) , j = i + 1, i + 2, . . . , 109. (5)

We can summarize these observations in this set of state transition probabilities:

Pij =







P [K ≥ i] 50 ≤ i ≤ 109, j = 50,
PK (50 + i − j) 50 ≤ i ≤ 59, 51 ≤ j ≤ 50 + i,
PK (50 + i − j) 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
PK (i − j) + PK (50 + i − j) 60 ≤ i ≤ 109, 60 ≤ j ≤ i,
PK (50 + i − j) 60 ≤ i ≤ 108, i + 1 ≤ j ≤ 109
0 otherwise

(6)

Note that the “0 otherwise” rule comes into effect when 50 ≤ i ≤ 59 and j > 50 + i. To
simplify these rules, we observe that PK(k) = 0 for k < 0. This implies PK(50 + i − j) = 0
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for j > 50 + i. In addition, for j > i, PK(i − j) = 0. These facts imply that we can write
the state transition probabilities in the simpler form:

Pij =







P [K ≥ i] 50 ≤ i ≤ 109, j = 50,
PK (50 + i − j) 50 ≤ i ≤ 59, 51 ≤ j
PK (50 + i − j) 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
PK (i − j) + PK (50 + i − j) 60 ≤ i ≤ 109, 60 ≤ j

(7)

Finally, we make the definitions

βi = P [K ≥ i] , γk = PK (50 + k) , δk = PK (k) + PK (50 + k) . (8)

With these definitions, the state transition probabilities are

Pij =







βi 50 ≤ i ≤ 109, j = 50,
γi−j 50 ≤ i ≤ 59, 51 ≤ j
γi−j 60 ≤ i ≤ 109, 51 ≤ j ≤ 59,
δi−j 60 ≤ i ≤ 109, 60 ≤ j

(9)

Expressed as a table, the state transition matrix P is

i\j 50 51 · · · 59 60 · · · · · · · · · · · · 109

50 β50 γ−1 · · · γ−9 · · · · · · · · · · · · · · · γ−59

51 β51 γ0

. . .
...

. . .
...

...
...

...
. . . γ−1

. . .
. . .

...
59 β59 γ8 · · · γ0 γ−1 · · · γ−9 · · · · · · γ−50

60 β60 γ9 · · · γ1 δ0 · · · δ−9 · · · δ−49

...
...

...
. . .

...
...

. . .
. . .

...
...

...
... γ9

... δ−9

...
...

...
. . .

... δ9

...
...

...
...

. . .
...

...
. . .

. . .
...

109 β109 γ58 · · · γ50 δ49 · · · δ9 · · · · · · δ0

(10)

In terms of Matlab, all we need to do is to encode the matrix P, calculate the stationary
probability vector π, and then calculate E[Y ], the expected number of pads sold on a typical
day. To calculate E[Y ], we use iterated expectation. The number of pads ordered is the
Poisson random variable K. We assume that on a day n that Xn = i and we calculate the
conditional expectation

E [Y |Xn = i] = E [min(K, i)] =

i−1∑

j=0

jPK (j) + iP [K ≥ i] . (11)

Since only states i ≥ 50 are possible, we can write

E [Y |Xn = i] =

48∑

j=0

jPK (j) +

i−1∑

j=49

jPK (j) + iP [K ≥ i] . (12)
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Finally, we assume that on a typical day n, the state of the system Xn is described by the
stationary probabilities P [Xn = i] = πi and we calculate

E [Y ] =

109∑

i=50

E [Y |Xn = i] πi. (13)

These calculations are given in this Matlab program:

function [pstat,ey]=brakepads(alpha);

s=(50:109)’;

beta=1-poissoncdf(alpha,s-1);

grow=poissonpmf(alpha,50+(-1:-1:-59));

gcol=poissonpmf(alpha,50+(-1:58));

drow=poissonpmf(alpha,0:-1:-49);

dcol=poissonpmf(alpha,0:49);

P=[beta,toeplitz(gcol,grow)];

P(11:60,11:60)=P(11:60,11:60)...

+toeplitz(dcol,drow);

pstat=dmcstatprob(P);

[I,J]=ndgrid(49:108,49:108);

G=J.*(I>=J);

EYX=(G*gcol)+(s.*beta);

pk=poissonpmf(alpha,0:48);

EYX=EYX+(0:48)*pk;

ey=(EYX’)*pstat;

The first half of brakepads.m constructs
P to calculate the stationary probabilities.
The first column of P is just the vector

beta =
[
β50 · · · β109

]
′

. (14)

The rest of P is easy to construct using
toeplitz function. We first build an asym-
metric Toeplitz matrix with first row and
first column

grow =
[
γ−1 γ−2 · · · γ−59

]
(15)

gcol =
[
γ−1 γ0 · · · γ58

]
′

(16)

Note that δk = PK(k) + γk. Thus, to construct the Toeplitz matrix in the lower right
corner of P, we simply add the Toeplitz matrix corresponding to the missing PK(k) term.
The second half of brakepads.m calculates E[Y ] using the iterated expectation. Note that

EYX =
[
E [Y |Xn = 50] · · · E [Y |Xn = 109]

]
′

. (17)

The somewhat convoluted code becomes clearer by noting the following correspondences:

E [Y |Xn = i] =
48∑

j=0

jPK (j)

︸ ︷︷ ︸

(0:48)*pk

+
i−1∑

j=49

jPK (j)

︸ ︷︷ ︸

G*gcol

+ iP [K ≥ i]
︸ ︷︷ ︸

s.*beta

. (18)

To find E[Y ], we execute the commands:

>> [ps,ey]=brakepads(50);

>> ey

ey =

49.4154

>>

We see that although the store receives 50 orders for brake pads on average, the average
number sold is only 49.42 because once in awhile the pads are out of stock. Some experi-
mentation will show that if the expected number of orders α is significantly less than 50,
then the expected number of brake pads sold each days is very close to α. On the other
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hand, if α � 50, then the each day the store will run out of pads and will get a delivery of
50 pads ech night. The expected number of unfulfilled orders will be very close to α − 50.

Note that a new inventory policy in which the overnight delivery is more than 50 pads
or the threshold for getting a shipment is more than 60 will reduce the expected numer of
unfulfilled orders. Whether such a change in policy is a good idea depends on factors such
as the carrying cost of inventory that are absent from our simple model.

Problem 12.11.5 Solution

Under construction.

Problem 12.11.9 Solution

Under construction.
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