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Problem 2.2.8 Solution

From the problem statement, a single is twice as likely as a double, which is twice as likely
as a triple, which is twice as likely as a home-run. If p is the probability of a home run,
then

PB (4) = p PB (3) = 2p PB (2) = 4p PB (1) = 8p (1)

Since a hit of any kind occurs with probability of .300, p + 2p + 4p + 8p = 0.300 which
implies p = 0.02. Hence, the PMF of B is

PB (b) =







0.70 b = 0
0.16 b = 1
0.08 b = 2
0.04 b = 3
0.02 b = 4
0 otherwise

(2)

Problem 2.3.13 Solution

(a) Let Sn denote the event that the Sixers win the series in n games. Similarly, Cn is
the event that the Celtics in in n games. The Sixers win the series in 3 games if they
win three straight, which occurs with probability

P [S3] = (1/2)3 = 1/8 (1)

The Sixers win the series in 4 games if they win two out of the first three games and
they win the fourth game so that

P [S4] =

(
3

2

)

(1/2)3(1/2) = 3/16 (2)

The Sixers win the series in five games if they win two out of the first four games and
then win game five. Hence,

P [S5] =

(
4

2

)

(1/2)4(1/2) = 3/16 (3)
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By symmetry, P [Cn] = P [Sn]. Further we observe that the series last n games if
either the Sixers or the Celtics win the series in n games. Thus,

P [N = n] = P [Sn] + P [Cn] = 2P [Sn] (4)

Consequently, the total number of games, N , played in a best of 5 series between the
Celtics and the Sixers can be described by the PMF

PN (n) =







2(1/2)3 = 1/4 n = 3

2
(3
1

)
(1/2)4 = 3/8 n = 4

2
(4
2

)
(1/2)5 = 3/8 n = 5

0 otherwise

(5)

(b) For the total number of Celtic wins W , we note that if the Celtics get w < 3 wins,
then the Sixers won the series in 3 + w games. Also, the Celtics win 3 games if they
win the series in 3,4, or 5 games. Mathematically,

P [W = w] =

{
P [S3+w] w = 0, 1, 2
P [C3] + P [C4] + P [C5] w = 3

(6)

Thus, the number of wins by the Celtics, W , has the PMF shown below.

PW (w) =







P [S3] = 1/8 w = 0
P [S4] = 3/16 w = 1
P [S5] = 3/16 w = 2
1/8 + 3/16 + 3/16 = 1/2 w = 3
0 otherwise

(7)

(c) The number of Celtic losses L equals the number of Sixers’ wins WS . This implies
PL(l) = PWS

(l). Since either team is equally likely to win any game, by symmetry,
PWS

(w) = PW (w). This implies PL(l) = PWS
(l) = PW (l). The complete expression

of for the PMF of L is

PL (l) = PW (l) =







1/8 l = 0
3/16 l = 1
3/16 l = 2
1/2 l = 3
0 otherwise

(8)

Problem 2.5.9 Solution

In this ”double-or-nothing” type game, there are only two possible payoffs. The first is zero
dollars, which happens when we lose 6 straight bets, and the second payoff is 64 dollars
which happens unless we lose 6 straight bets. So the PMF of Y is

PY (y) =







(1/2)6 = 1/64 y = 0
1 − (1/2)6 = 63/64 y = 64
0 otherwise

(1)
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The expected amount you take home is

E [Y ] = 0(1/64) + 64(63/64) = 63 (2)

So, on the average, we can expect to break even, which is not a very exciting proposition.

Problem 2.6.6 Solution

The cellular calling plan charges a flat rate of $20 per month up to and including the 30th
minute, and an additional 50 cents for each minute over 30 minutes. Knowing that the time
you spend on the phone is a geometric random variable M with mean 1/p = 30, the PMF
of M is

PM (m) =

{
(1 − p)m−1p m = 1, 2, . . .
0 otherwise

(1)

The monthly cost, C obeys

PC (20) = P [M ≤ 30] =
30∑

m=1

(1 − p)m−1p = 1 − (1 − p)30 (2)

When M ≥ 30, C = 20 + (M − 30)/2 or M = 2C − 10. Thus,

PC (c) = PM (2c − 10) c = 20.5, 21, 21.5, . . . (3)

The complete PMF of C is

PC (c) =

{
1 − (1 − p)30 c = 20
(1 − p)2c−10−1p c = 20.5, 21, 21.5, . . .

(4)

Problem 2.7.7 Solution

We define random variable W such that W = 1 if the circuit works or W = 0 if the circuit
is defective. (In the probability literature, W is called an indicator random variable.) Let
Rs denote the profit on a circuit with standard devices. Let Ru denote the profit on a
circuit with ultrareliable devices. We will compare E[Rs] and E[Ru] to decide which circuit
implementation offers the highest expected profit.

The circuit with standard devices works with probability (1−q)10 and generates revenue
of k dollars if all of its 10 constituent devices work. We observe that we can we can express
Rs as a function rs(W ) and that we can find the PMF PW (w):

Rs = rs(W ) =

{
−10 W = 0,
k − 10 W = 1,

PW (w) =







1 − (1 − q)10 w = 0,
(1 − q)10 w = 1,
0 otherwise.

(1)

Thus we can express the expected profit as

E [rs(W )] =

1∑

w=0

PW (w) rs(w) (2)

= PW (0) (−10) + PW (1) (k − 10) (3)

= (1 − (1 − q)10)(−10) + (1 − q)10(k − 10) = (0.9)10k − 10. (4)
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For the ultra-reliable case,

Ru = ru(W ) =

{
−30 W = 0,
k − 30 W = 1,

PW (w) =







1 − (1 − q/2)10 w = 0,
(1 − q/2)10 w = 1,
0 otherwise.

(5)

Thus we can express the expected profit as

E [ru(W )] =

1∑

w=0

PW (w) ru(w) (6)

= PW (0) (−30) + PW (1) (k − 30) (7)

= (1 − (1 − q/2)10)(−30) + (1 − q/2)10(k − 30) = (0.95)10k − 30 (8)

To determine which implementation generates the most profit, we solve E[Ru] ≥ E[Rs],
yielding k ≥ 20/[(0.95)10 − (0.9)10] = 80.21. So for k < $80.21 using all standard devices
results in greater revenue, while for k > $80.21 more revenue will be generated by imple-
menting all ultra-reliable devices. That is, when the price commanded for a working circuit
is sufficiently high, we should build more-expensive higher-reliability circuits.
If you have read ahead to Section 2.9 and learned about conditional expected values, you

might prefer the following solution. If not, you might want to come back and review this

alternate approach after reading Section 2.9.

Let W denote the event that a circuit works. The circuit works and generates revenue
of k dollars if all of its 10 constituent devices work. For each implementation, standard or
ultra-reliable, let R denote the profit on a device. We can express the expected profit as

E [R] = P [W ]E [R|W ] + P [W c]E [R|W c] (9)

Let’s first consider the case when only standard devices are used. In this case, a circuit
works with probability P [W ] = (1 − q)10. The profit made on a working device is k − 10
dollars while a nonworking circuit has a profit of -10 dollars. That is, E[R|W ] = k − 10
and E[R|W c] = −10. Of course, a negative profit is actually a loss. Using Rs to denote the
profit using standard circuits, the expected profit is

E [Rs] = (1 − q)10(k − 10) + (1 − (1 − q)10)(−10) = (0.9)10k − 10 (10)

And for the ultra-reliable case, the circuit works with probability P [W ] = (1− q/2)10. The
profit per working circuit is E[R|W ] = k − 30 dollars while the profit for a nonworking
circuit is E[R|W c] = −30 dollars. The expected profit is

E [Ru] = (1 − q/2)10(k − 30) + (1 − (1 − q/2)10)(−30) = (0.95)10k − 30 (11)

Not surprisingly, we get the same answers for E[Ru] and E[Rs] as in the first solution by

performing essentially the same calculations. it should be apparent that indicator random

variable W in the first solution indicates the occurrence of the conditioning event W in the

second solution. That is, indicators are a way to track conditioning events.
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Problem 2.7.8 Solution

(a) There are
(46

6

)
equally likely winning combinations so that

q =
1
(46

6

) =
1

9,366,819
≈ 1.07 × 10−7 (1)

(b) Assuming each ticket is chosen randomly, each of the 2n− 1 other tickets is indepen-
dently a winner with probability q. The number of other winning tickets Kn has the
binomial PMF

PKn
(k) =

{ (2n−1
k

)
qk(1 − q)2n−1−k k = 0, 1, . . . , 2n − 1

0 otherwise
(2)

(c) Since there are Kn + 1 winning tickets in all, the value of your winning ticket is
Wn = n/(Kn + 1) which has mean

E [Wn] = nE

[
1

Kn + 1

]

(3)

Calculating the expected value

E

[
1

Kn + 1

]

=

2n−1∑

k=0

(
1

k + 1

)

PKn
(k) (4)

is fairly complicated. The trick is to express the sum in terms of the sum of a
binomial PMF.

E

[
1

Kn + 1

]

=

2n−1∑

k=0

1

k + 1

(2n − 1)!

k!(2n − 1 − k)!
qk(1 − q)2n−1−k (5)

=
1

2n

2n−1∑

k=0

(2n)!

(k + 1)!(2n − (k + 1))!
qk(1 − q)2n−(k+1) (6)

By factoring out 1/q, we obtain

E

[
1

Kn + 1

]

=
1

2nq

2n−1∑

k=0

(
2n

k + 1

)

qk+1(1 − q)2n−(k+1) (7)

=
1

2nq

2n∑

j=1

(
2n

j

)

qj(1 − q)2n−j

︸ ︷︷ ︸

A

(8)

We observe that the above sum labeled A is the sum of a binomial PMF for 2n trials
and success probability q over all possible values except j = 0. Thus

A = 1 −
(

2n

0

)

q0(1 − q)2n−0 = 1 − (1 − q)2n (9)
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This implies

E

[
1

Kn + 1

]

=
1 − (1 − q)2n

2nq
(10)

Our expected return on a winning ticket is

E [Wn] = nE

[
1

Kn + 1

]

=
1 − (1 − q)2n

2q
(11)

Note that when nq � 1, we can use the approximation that (1 − q)2n ≈ 1 − 2nq to
show that

E [Wn] ≈ 1 − (1 − 2nq)

2q
= n (nq � 1) (12)

However, in the limit as the value of the prize n approaches infinity, we have

lim
n→∞

E [Wn] =
1

2q
≈ 4.683 × 106 (13)

That is, as the pot grows to infinity, the expected return on a winning ticket doesn’t
approach infinity because there is a corresponding increase in the number of other
winning tickets. If it’s not clear how large n must be for this effect to be seen,
consider the following table:

n 106 107 108

E [Wn] 9.00 × 105 4.13 × 106 4.68 × 106 (14)

When the pot is $1 million, our expected return is $900,000. However, we see that
when the pot reaches $100 million, our expected return is very close to 1/(2q), less
than $5 million!

Problem 2.8.8 Solution

Given the following description of the random variable Y ,

Y =
1

σx
(X − µX) (1)

we can use the linearity property of the expectation operator to find the mean value

E [Y ] =
E [X − µX ]

σX
=

E [X] − E [X]

σX
= 0 (2)

Using the fact that Var[aX + b] = a2 Var[X], the variance of Y is found to be

Var [Y ] =
1

σ2
X

Var [X] = 1 (3)

6



Problem 2.10.4 Solution

Suppose Xn is a Zipf (n, α = 1) random variable and thus has PMF

PX (x) =

{
c(n)/x x = 1, 2, . . . , n
0 otherwise

(1)

The problem asks us to find the smallest value of k such that P [Xn ≤ k] ≥ 0.75. That is,
if the server caches the k most popular files, then with P [Xn ≤ k] the request is for one of
the k cached files. First, we might as well solve this problem for any probability p rather
than just p = 0.75. Thus, in math terms, we are looking for

k = min
{
k′|P

[
Xn ≤ k′

]
≥ p
}

. (2)

What makes the Zipf distribution hard to analyze is that there is no closed form expression
for

c(n) =

(
n∑

x=1

1

x

)−1

. (3)

Thus, we use Matlab to grind through the calculations. The following simple program
generates the Zipf distributions and returns the correct value of k.

function k=zipfcache(n,p);

%Usage: k=zipfcache(n,p);

%for the Zipf (n,alpha=1) distribution, returns the smallest k

%such that the first k items have total probability p

pmf=1./(1:n);

pmf=pmf/sum(pmf); %normalize to sum to 1

cdf=cumsum(pmf);

k=1+sum(cdf<=p);

The program zipfcache generalizes 0.75 to be the probability p. Although this program is
sufficient, the problem asks us to find k for all values of n from 1 to 103!. One way to do
this is to call zipfcache a thousand times to find k for each value of n. A better way is to
use the properties of the Zipf PDF. In particular,

P
[
Xn ≤ k′

]
= c(n)

k′

∑

x=1

1

x
=

c(n)

c(k′)
(4)

Thus we wish to find

k = min

{

k′| c(n)

c(k′)
≥ p

}

= min

{

k′| 1

c(k′)
≥ p

c(n)

}

. (5)

Note that the definition of k implies that

1

c(k′)
<

p

c(n)
, k′ = 1, . . . , k − 1. (6)

Using the notation |A| to denote the number of elements in the set A, we can write

k = 1 +

∣
∣
∣
∣

{

k′| 1

c(k′)
<

p

c(n)

}∣
∣
∣
∣

(7)

This is the basis for a very short Matlab program:
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function k=zipfcacheall(n,p);

%Usage: k=zipfcacheall(n,p);

%returns vector k such that the first

%k(m) items have total probability >= p

%for the Zipf(m,1) distribution.

c=1./cumsum(1./(1:n));

k=1+countless(1./c,p./c);

Note that zipfcacheall uses a short Matlab program countless.m that is almost the
same as count.m introduced in Example 2.47. If n=countless(x,y), then n(i) is the
number of elements of x that are strictly less than y(i) while count returns the number of
elements less than or equal to y(i).

In any case, the commands

k=zipfcacheall(1000,0.75);

plot(1:1000,k);

is sufficient to produce this figure of k as a function of m:

0 100 200 300 400 500 600 700 800 900 1000
0

50

100

150

200

n

k

We see in the figure that the number of files that must be cached grows slowly with the
total number of files n.

Finally, we make one last observation. It is generally desirable for Matlab to execute
operations in parallel. The program zipfcacheall generally will run faster than n calls to
zipfcache. However, to do its counting all at once, countless generates and n × n array.
When n is not too large, say n ≤ 1000, the resulting array with n2 = 1,000,000 elements
fits in memory. For much large values of n, say n = 106 (as was proposed in the original
printing of this edition of the text, countless will cause an “out of memory” error.

Problem 3.2.5 Solution

fX (x) =

{
ax2 + bx 0 ≤ x ≤ 1
0 otherwise

(1)

First, we note that a and b must be chosen such that the above PDF integrates to 1.
∫ 1

0
(ax2 + bx) dx = a/3 + b/2 = 1 (2)

Hence, b = 2 − 2a/3 and our PDF becomes

fX (x) = x(ax + 2 − 2a/3) (3)
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For the PDF to be non-negative for x ∈ [0, 1], we must have ax + 2 − 2a/3 ≥ 0 for all
x ∈ [0, 1]. This requirement can be written as

a(2/3 − x) ≤ 2 (0 ≤ x ≤ 1) (4)

For x = 2/3, the requirement holds for all a. However, the problem is tricky because we
must consider the cases 0 ≤ x < 2/3 and 2/3 < x ≤ 1 separately because of the sign change
of the inequality. When 0 ≤ x < 2/3, we have 2/3 − x > 0 and the requirement is most
stringent at x = 0 where we require 2a/3 ≤ 2 or a ≤ 3. When 2/3 < x ≤ 1, we can write the
constraint as a(x−2/3) ≥ −2. In this case, the constraint is most stringent at x = 1, where
we must have a/3 ≥ −2 or a ≥ −6. Thus a complete expression for our requirements are

−6 ≤ a ≤ 3 b = 2 − 2a/3 (5)

As we see in the following plot, the shape of the PDF fX(x) varies greatly with the value
of a.

0 0.2 0.4 0.6 0.8 1
0

0.5

1

1.5

2

2.5

3

f X
(x

)

x

a=−6
a=−3
a=0 
a=3 

Problem 3.4.14 Solution

(a) Since fX(x) ≥ 0 and x ≥ r over the entire integral, we can write
∫ ∞

r
xfX (x) dx ≥

∫ ∞

r
rfX (x) dx = rP [X > r] (1)

(b) We can write the expected value of X in the form

E [X] =

∫ r

0
xfX (x) dx +

∫ ∞

r
xfX (x) dx (2)

Hence,

rP [X > r] ≤
∫ ∞

r
xfX (x) dx = E [X] −

∫ r

0
xfX (x) dx (3)

Allowing r to approach infinity yields

lim
r→∞

rP [X > r] ≤ E [X] − lim
r→∞

∫ r

0
xfX (x) dx = E [X] − E [X] = 0 (4)

Since rP [X > r] ≥ 0 for all r ≥ 0, we must have limr→∞ rP [X > r] = 0.
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(c) We can use the integration by parts formula
∫

u dv = uv −
∫

v du by defining u =
1 − FX(x) and dv = dx. This yields

∫ ∞

0
[1 − FX (x)] dx = x[1 − FX (x)]|∞0 +

∫ ∞

0
xfX (x) dx (5)

By applying part (a), we now observe that

x [1 − FX (x)]|∞0 = lim
r→∞

r[1 − FX (r)] − 0 = lim
r→∞

rP [X > r] (6)

By part (b), limr→∞ rP [X > r] = 0 and this implies x[1 − FX(x)]|∞0 = 0. Thus,
∫ ∞

0
[1 − FX (x)] dx =

∫ ∞

0
xfX (x) dx = E [X] (7)

Problem 3.5.10 Solution

This problem is mostly calculus and only a little probability. From the problem statement,
the SNR Y is an exponential (1/γ) random variable with PDF

fY (y) =

{
(1/γ)e−y/γ y ≥ 0,
0 otherwise.

(1)

Thus, from the problem statement, the BER is

P e = E [Pe(Y )] =

∫ ∞

−∞
Q(
√

2y)fY (y) dy =

∫ ∞

0
Q(
√

2y)
y

γ
e−y/γ dy (2)

Like most integrals with exponential factors, its a good idea to try integration by parts.
Before doing so, we recall that if X is a Gaussian (0, 1) random variable with CDF FX(x),
then

Q(x) = 1 − FX (x) . (3)

It follows that Q(x) has derivative

Q′(x) =
dQ(x)

dx
= −dFX (x)

dx
= −fX (x) = − 1√

2π
e−x2/2 (4)

To solve the integral, we use the integration by parts formula
∫ b
a u dv = uv|ba −

∫ b
a v du,

where

u = Q(
√

2y) dv =
1

γ
e−y/γ dy (5)

du = Q′(
√

2y)
1√
2y

= − e−y

2
√

πy
v = −e−y/γ (6)

From integration by parts, it follows that

P e = uv|∞0 −
∫ ∞

0
v du = −Q(

√

2y)e−y/γ
∣
∣
∣

∞

0
−
∫ ∞

0

1√
y
e−y[1+(1/γ)] dy (7)

= 0 + Q(0)e−0 − 1

2
√

π

∫ ∞

0
y−1/2e−y/γ̄ dy (8)
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where γ̄ = γ/(1+γ). Next, recalling that Q(0) = 1/2 and making the substitution t = y/γ̄,
we obtain

P e =
1

2
− 1

2

√

γ̄

π

∫ ∞

0
t−1/2e−t dt (9)

From Math Fact B.11, we see that the remaining integral is the Γ(z) function evaluated
z = 1/2. Since Γ(1/2) =

√
π,

P e =
1

2
− 1

2

√

γ̄

π
Γ(1/2) =

1

2

[
1 −√

γ̄
]

=
1

2

[

1 −
√

γ

1 + γ

]

(10)

Problem 3.7.2 Solution

Since Y =
√

X, the fact that X is nonegative and that we asume the squre root is always
positive implies FY (y) = 0 for y < 0. In addition, for y ≥ 0, we can find the CDF of Y by
writing

FY (y) = P [Y ≤ y] = P
[√

X ≤ y
]

= P
[
X ≤ y2

]
= FX

(
y2
)

(1)

For x ≥ 0, FX(x) = 1 − e−λx. Thus,

FY (y) =

{

1 − e−λy2

y ≥ 0
0 otherwise

(2)

By taking the derivative with respect to y, it follows that the PDF of Y is

fY (y) =

{

2λye−λy2

y ≥ 0
0 otherwise

(3)

In comparing this result to the Rayleigh PDF given in Appendix A, we observe that Y is a
Rayleigh (a) random variable with a =

√
2λ.

Problem 3.8.8 Solution

(a) The event Bi that Y = ∆/2 + i∆ occurs if and only if i∆ ≤ X < (i + 1)∆. In
particular, since X has the uniform (−r/2, r/2) PDF

fX (x) =

{
1/r −r/2 ≤ x < r/2,
0 otherwise,

(1)

we observe that

P [Bi] =

∫ (i+1)∆

i∆

1

r
dx =

∆

r
(2)

In addition, the conditional PDF of X given Bi is

fX|Bi
(x) =

{
fX (x) /P [B] x ∈ Bi

0 otherwise
=

{
1/∆ i∆ ≤ x < (i + 1)∆
0 otherwise

(3)

It follows that given Bi, Z = X−Y = X−∆/2− i∆, which is a uniform (−∆/2,∆/2)
random variable. That is,

fZ|Bi
(z) =

{
1/∆ −∆/2 ≤ z < ∆/2
0 otherwise

(4)
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(b) We observe that fZ|Bi
(z) is the same for every i. Thus, we can write

fZ (z) =
∑

i

P [Bi] fZ|Bi
(z) = fZ|B0

(z)
∑

i

P [Bi] = fZ|B0
(z) (5)

Thus, Z is a uniform (−∆/2,∆/2) random variable. From the definition of a uniform
(a, b) random variable, Z has mean and variance

E [Z] = 0, Var[Z] =
(∆/2 − (−∆/2))2

12
=

∆2

12
. (6)

Problem 3.8.9 Solution

For this problem, almost any non-uniform random variable X will yield a non-uniform
random variable Z. For example, suppose X has the “triangular” PDF

fX (x) =

{
8x/r2 0 ≤ x ≤ r/2
0 otherwise

(1)

In this case, the event Bi that Y = i∆ + ∆/2 occurs if and only if i∆ ≤ X < (i + 1)∆.
Thus

P [Bi] =

∫ (i+1)∆

i∆

8x

r2
dx =

8∆(i∆ + ∆/2)

r2
(2)

It follows that the conditional PDF of X given Bi is

fX|Bi
(x) =

{
fX(x)
P [Bi]

x ∈ Bi

0 otherwise
=

{ x
∆(i∆+∆/2) i∆ ≤ x < (i + 1)∆

0 otherwise
(3)

Given event Bi, Y = i∆ + ∆/2, so that Z = X − Y = X − i∆ − ∆/2. This implies

fZ|Bi
(z) = fX|Bi

(z + i∆ + ∆/2) =

{
z+i∆+∆/2
∆(i∆+∆/2) −∆/2 ≤ z < ∆/2

0 otherwise
(4)

We observe that the PDF of Z depends on which event Bi occurs. Moreover, fZ|Bi
(z) is

non-uniform for all Bi.
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