
Chapter-III

Introduction:

In this chapter we shall consider some fundamental concepts of linear systems analysis and use

the power of MATLAB to undertake analysis.

Basic discrete-time sequences:

1. The delta sequence:

The delta sequence plays an important role in the characterization of discrete-time linear time-

invariant systems. The delta sequence, written as n , is defined as

1, 0

0, 0

n
n

n

Practice:

>>n=-30:30; %specify index n

>>delta=(n= =0); %define the delta sequence

>>stem(n,delta, ‘filled’) %plot the delta sequence

2. The unit-step sequence:

The unit-step sequence, written as u n is defined as

1, 0

0, 0

n
u n

n

Practice:

>>n=-30:30; %specify index n

>>u_step=(n>=0); %define the unit step sequence

>>stem(n, u_step, ‘filled’) %plot the unit step sequence

Practice:

Provide a MATLAB code to sketch the discrete-time sequence x n specified by

2 3 1 5x n n n n 3

>>n=-30:30; %specify index n

 59

>>xn=2*(n= =0)+3*((n-1)>=0)-5*((n-3)>=0); %define the sequence x[n]

>>stem(n,xn; ‘filled’);grid %plot the sequence x[n]

3. The ramp sequence:

The ramp sequence, r[n], is defined as follows:

, 0

0, 0

n n
r n

n

Practice:

>>n=-10:10; %define index n

>>ramp=n.*(n>=0); %define a ramp

>>stem(n,ramp,’filled’) %plot ramp

Practice:

Generate and plot a shifted version of a ramp sequence, r[n-5]

>>n=-5:15; %define index n

>>x=(n-5).*((n-5)>=0); %define shifted version of ramp

>>stem(n,x,’filled’);grid %plot the shifted version of ramp

Practice:

Define and sketch the discrete-time exponential sequence given by

0.8
n

x n u n

>>%exponential sequence

>>n=-30:30; %specify index n

>>x=(0.8).^n.*(n>=0); %define the sequence x[n]

>>stem(n,x);grid %plot the exponential sequence

Square and sawtooth waves:

 60

The MATLAB built-in functions square and sawtooth make it possible to generate a squarewave

and sawtooth wave, respectively.

Practice:

t=(0:0.001:1); %time base

x=square(2*pi*5*t); %squarewave generator

subplot(2,1,1);plot(t,x,’LineWidth’,2); grid %plot squarewave

axis([0 1 –1.2 1.2]); %scale axes

title(‘Squarewave’) %add title

ylabel(‘Amplitude’); %label the vertical axis

%y=max(0,x); %squarewave ranging from 0 to 1

z=sawtooth(2*pi*5*t); %sawtooth wave

subplot(2,1,2); plot(t,z,’LineWidth’,2);grid %plot sawtooth wave

title(‘Sawtooth wave’) %add title

ylabel(‘Amplitude’) %label the vertical axis

xlabel(‘Time’) %label the horizontal axis

axis([0 1 –1.2 1.2]) %scale the axes

Practice:

Generate a 50 Hz sinusoidal signal.

>>Fs=1000; %sampling frequency

>>Ts=1/Fs; %sampling interval

>>t=0:Ts:0.1; %sampling instants

>>x=sin(2*pi*50*t); %signal vector

>>plot(t,x);grid %plot the signal

>>xlabel(‘Time (sec)’) %add label to the horizontal axis

>>ylabel(‘Amplitude’) %add label to the vertical axis

 61

>>title(‘Sinusoidal wave’) %add title to the plot

Convolution:

Convolution sum

The convolution sum of two sequences x n and h n , written as y n x n h n , is

defined by

k

y n x n h n x k h n k

MATLAB has a built-in function, conv, to perform convolution on finite-length sequences of

values. This function assumes that the two sequences have been defined as vectors and it

generates an output sequence that is also a vector. Convolving a sequence x n of length N with

a sequence h n with length M results in a sequence of length L=N+M-1.

Syntax:

>>y=conv(x,h)

where x and h are finite sequences written in vector form

Practice:

Determine the convolution of the sequences x n and h n specified below.

>>x=[1 2 2 1 2]; nx=[-2:2]; %define sequence x[n] and its range

>>h=[2 2 -1 1 2 2 1]; nh=[-3:3]; %define sequence h[n] and its range

>>nmin=min(nx)+min(nh); %specify the lower bound of convolved sequences

>>nmax=max(nx)+max(nh); %specify the upper bound of convolved sequences

>>y=conv(x,h); n=[nmin:nmax]; %compute convolution and specify its range

>>stem(n,y,’filled’); grid %plot the resulting sequence y[n]

>>title(‘convolution of two sequences’) %add title to the plot

>>ylabel(‘y[n]=x[n]*h[n]’) %label the y-axis

>>xlabel(‘index, [n]’) %label the horizontal axis

 62

>>[n’ y’] <enter> % print index and sequence y[n] as column vectors

n

-5

-4

-3

-2

-1

0

1

2

3

4

5

y 2 6 7 5 8 11 8 10 8 5 2

Numerical convolution:

The other form of convolution is known as the convolution integral. If x t and h t are two

continuous-time signals, then the convolution integral is defined by

0

t

y t x t h t x h t d

since computers have a hard time integrating, we shall consider evaluating numerically. y t

Let t kT

0
0

kkT

i

y kT x h kT d T x iT h k i T Tx kT h kT

where T is the integration step size. This equation is the convolution sum and can be found using

the conv function. Generally, the smaller the value of T, the higher the accuracy of the result.

Practice:

Evaluate the convolution of sin 2x t t with
0.1th t e from t=0 to 5 with T=0.1.

>>t=0:0.1:5; %define t=kT

>>x=sin(2*t); %define x(kt)

>>h=exp(-0.1*t); %define h(kT)

>>0.1*conv(x,h); %evaluate convolution

Sequence folding:

 63

A number of signal processing operations involve taking the mirror image of a sequence about

the vertical axis passing through the origin. The flplr function flips a sequence left to right. The

following script illustrates the process of folding via MATLAB.

n=-2:4;

x=[1 1 0 0 1 1 1];

y=fliplr(x);

m=-fliplr(n);

subplot(2,1,1);stem(n,x,'filled');grid

title('original sequence')

axis([-3 5 0 1.2])

subplot(2,1,2);stem(m,y,'filled');grid

title('folded sequence')

axis([-5 3 0 1.2])

The following plots show the original sequence and its folded version.

Ordinary Differential Equations (ODE):

MATLAB has built-in routines for solving ordinary differential equations, namely, ode23, and

ode45. The function ode45 is more accurate, but a bit slower than ode23.

In order to solve a differential equation using MATLAB, the following items are required:

You need to make a separate function file that contains the differential equation or system of

differential equations.

Specify the time range over which the solution is desired

Specify the initial conditions

Practice:

 64

Use MATLAB to solve the following ordinary differential equation

3 0

0 2

dy
ty

dt

y

Create the function

function ydot=yprime(t,y)

ydot=-3*t*y;

Time range: we want the solution, say, over the interval [0 6]

Initial conditions: initial=2

Typing the following at the command prompt will solve the ODE.

>>initial =3;

>>[t,y]=ode23(‘yprime’, [0 6],initial)

>>plot(t,y,’LineWidth’,2)

We shall now consider the solution of second-order differential equations. Higher order ordinary

differential equations require conversion to two or more first order ordinary differential

equations.

Practice:

Solve the following second order ordinary differential equation:

2

2

'

3 7 0

0 0, 0

d y dy
t y

dt dt

y y 1

1y

To convert to first-order differential equations, we proceed as follows:

1

'

2

'

2 23 7

y y

y y

y ty

This yields a system of two first-order differential equations

'

1 2

'

2 23 7

y y

y ty 1y

 65

function ydot= yprime(t,y)

ydot= [y(2); -7*y(1)-3*t*y(2)];

Typing the following at the command prompt will solve the ODE.

>>initial=[0; 1];

>>[t,y]= ode45(‘yprime’,[0 6],initial)

>>plot(t,y,’LineWidth’,3);grid

Practice:

For the voltage divider depicted below, sketch the power dissipated in RL as RL varies from 10

ohms to 150 ohms. Deduce the value of RL yielding a maximum power transfer.

+
-V=10 mv

40

iR

LR

I

2

2

2

L
L

i L i L i L

V V
I P R V

R R R R R R

R

>>close all; clear all; clc;

>>v=0.010;

>>RI=40;

>>RL=10:1:150;

for i=1:length(RL)

 P(i)=(V^2*RL(i))/(RI+RL(i))^2;

end

plot(RL,P,’LineWidth’,2,’Color’,[0.2 0.3 0.1]);grid

set(gca, ‘Xtick’,0:10:150);

axis([0 max(RL) min(P) max()])

xlabel(‘Values of RL (ohms)’)

ylabel(‘Power dissipated in RL’)

title(‘Maximum power transfer’)

k=find(P= =max(P));

fprintf(‘\n’);

disp([Value of RL for max. power transfer: ‘, num2str(RL(k)),’ ohms’])

fprint(‘\n’);

 66

Transfer function:

A transfer function characterizes fully a linear time-invariant system. A transfer function

can be entered into MATLAB in a number of ways:

H s

We can use the command tf(num,den), where num and den are vectors of coefficients of the

numerator and denominator polynomials, respectively.

Practice:

2

1

5 6

s
H s

s s

>>num=[1 1]; %specify the numerator of H(s)

>>den=[1 5 6]; %specify the denominator of H(s)

>>sys=tf(num,den); %specify the transfer function of the system

>>sys %print the transfer function on the screen

An alternative approach is to use the command zpk(zeros, poles, gain), where zeros, poles

and gain are vectors of zeros, poles and gain of the transfer function.

Practice:

5 3

4 1

s
H s

s s 1

>>zeros=[-3]; %specify the zeros of H(s)

>>poles=[-4 –11]; %specify the poles of H(s)

>>gain=5; %specify the gain

>>sys=zpk(zeros,poles,gain); %specify the transfer function H(s)

>>sys %print the transfer function on the screen

Step response and impulse response:

 67

Continuous-time systems:

We shall now take a look at the step response of a linear time-invariant system (LTI) specified by

its transfer function. The step response is simply the output of an LTI system driven by a unit

step function. The command step provides the step response of continuous-time LTI systems.

Practice:

A linear time-invariant system is modeled by its transfer function given by

2

num(s) 1

den(s) 3 3

s
H s

s s

Find the step response.

>>%Step response of a continuous-time LTI system

>>num=[1 1]; %specify the numerator of H(s)

>>den=[1 3 3]; %specify the denominator of H(s)

>>sys=tf(num,den) %LTI system model created with transfer function (tf)

>>step(sys) %plot the step response of given system

Alternatively, a similar result can be obtained through the following steps:

>>%Step response of a continuous-time LTI system

>>num=[1 1]; %specify the numerator of H(s)

>>den=[1 3 3]; %specify the denominator of H(s)

>>sys=tf(num,den); %LTI system model

>>t=0:0.01:10; %specify time vector

>>step(sys,t) %plot the step response of given system

A third alternative involves the determination of the response before plotting

>>%Step response of a continuous-time LTI system

>>t=0:0.01:10; %specify a time vector

>>sys=tf([1 1],[1 3 3]); %specify model of system

>>[y, t]=step(sys,t); %compute the step response

>>plot(t,y);grid; %plot the step response

The inverse Lap lace transform of the transfer function H(s) is the impulse response of the

system. The command impulse determines the impulse response of an LTI system.

Practice:

Determine the impulse response of a system governed by the transfer function given by

2

num(s) 1

den(s) 3 3

s
H s

s s

>>%Impulse response of a continuous-time LTI system

>>num=[1 1]; %specify the numerator of H(s)

>>den=[1 3 3]; %specify the denominator of H(s)

 68

>>sys=tf(num,den); %specify model of system

>>impulse(sys) %plot the impulse response of the system

Alternatively, the same result can be obtained through the following steps:

>>%Impulse response of a continuous-time LTI system

>>num=[1 1]; %specify the numerator of H(s)

>>den=[1 3 3]; %specify the denominator of H(s)

>>sys=tf(num,den); %specify model of system

>>t=0:0.01:10; %define a time vector

>>impulse(sys,t); %plot the impulse response

A third alternative involves the determination of the impulse response before plotting the result.

>>%Impulse response of a continuous-time LTI system

>>t=0:0.01:10; %specify time vector

>>sys=tf([1 1],[1 3 3]); %model of the system

>>[y,t]=impulse(sys,t); %compute the impulse response

>>plot(t,y) %plot the impulse response

Discrete-time systems

The discrete counterparts of the commands step and impulse are dstep and dimpulse. We shall

illustrate these commands with few examples:

Practice:

2

4 1

0.5

z
H z

z z

>>%Step response of a discrete-time linear system

>>n=0:20; %specify discrete-time vector

>>num=[4 1] %specify the numerator of H(z)

>>den=[1 –1 0.5]; %specify the denominator of H(z)

>>y=dstep(num,den,n); %compute the step response

>>stem(n,y,’filled’) %sketch the step response

>>title(‘discrete-time step response of linear system’)

>>xlabel(‘index,[n]’)

>>ylabel(‘y[n]’)

 69

Practice:

%Impulse response of a discrete-time linear system

>>n=0:20; %specify discrete-time vector

>>num=[4 1]; %specify the numerator of H(z)

>>den=[1 –1 0.5]; %specify the denominator of H(z)

>>y=dimpulse(num,den,n); %compute the discrete-time impulse response

>>stem(n,y,’filled’) %plot impulse response

>>title(‘discrete-time impulse response of linear system’)

>>ylabel(‘y[n]’)

>>xlabel(‘index,[n]’)

Pole-zero plots:

The command pzmap displays the poles and zeros of the continuous- or discrete-time linear

system in the complex plane. The multiplicity of poles and zeros is not specified by pzmap. The

poles are depicted as crosses (x’s), and zeros by (0’s).

Practice:

Consider a linear time-invariant system modeled by the following transfer function:

3 2

4 3 2

2 3 4

5 2 2

s s s
H s

s s s s 9

Sketch the pole-zero plot of the system specified by H(s).

>>%Pole-zero plot of the system specified by H(s)

>>num=[1 2 3 4]; %specify the numerator of H(s)

>>den=[1 5 2 2 9]; %specify the denominator of H(s)

>>sys=tf(num,den); %model of the system

>>pzmap(sys) %plot the pole-zero plot

>>[p,z]=pzmap(sys); %return the system poles and zeros

 70

The Z-Plane:

The command zplane displays the poles and zeros of a linear time-invariant system in the

complex plane with a unit circle as a reference. The relative location of the poles and zeros, with

respect to the unit circle, is an important aspect in the analysis and design of digital filters.

Multiple order poles and zeros are indicated by the multiplicity number shown to the upper right

of the zeros or poles.

Practice:

A linear time-invariant discrete-time system is modeled by its transfer function given by

2

4 3 2

3 1

3 7 3

z z
H z

z z z z 9

Plot the zero-pole plot of the system.

>>num=[0 0 1 3 1]; %specify numerator of H(z)

>>den=[1 3 7 3 9]; %specify denominator of H(z)

>>zplane(num,den) %plot the zero-pole plot

Practice:

An LTI system is described by the following difference equation:

0.2 1 0.8 2 0.3 0.6 1 0.2 2y n y n y n x n x n x n

1. Find the poles and zeros of the system

 71

2. Plot the pole-zero diagram

3. Is the system stable? (BIBO stability implies the convergence of the cumulative sum of the

absolute value of the impulse response.)

4. Plot the magnitude and phase responses

>>b=[1 0.2 0.8];

>>a=[0.3 0.6 0.2];

>>zero=roots(b);

>>pole=roots(a);

>>zplane(b,a);

>>delta=[1 zeros(1,30)];

>>h=filter(b,a,delta);

>>cumsum(h)

>>N=512; Fs=8000;

>>freqz(b,a,N,Fs)

Stability design via Routh-Hurwitz:

It is possible to use MATLAB to find the gain, K, for the system so that it becomes stable.

Following is an illustration of the design of gain of transfer function:

3 218 77

K
H s

s s s K

>>K=1:2000; %specify the range of K

>>for m=1:length(K) %number of K values to test

 denH=[1 18 77 K(m)]; %specify the denominator of H(s)

 poles=roots(denH); %evaluate poles

 r=real(poles); %vector containing real values

 if max(r)>=0 %test poles for real parts

 poles %display poles with real part positive

 K=K(m) %display the corresponding value of K

 break %stop loop if rhp poles are found

 end %end if

end %end for

Partial-fraction expansion:

In the analysis of analog and discrete-time systems, one very useful method of solving the inverse

Laplace transform and the inverse Z transform is to perform partial fraction expansion on the

transfer function H(s) and H(z). MATLAB has built-in functions called residue and residuez

that return the partial fraction expansions of the transfer function H(s) and H(z), respectively.

Partial-fraction expansion on H(s)

simple poles:

 72

1

1 1 0

1

1 1 0

num s 1 2...
...

den s ... 1 2

m m

m

n n

n

r r r ns b s b s b
H s k s

s a s a s a s p s p s p n

where p k are the poles of the transfer function, r k are the coefficients of the partial

fraction terms (called the residues of the poles) and k(s) is a remainder polynomial which is

usually empty.

Syntax:

>>[r,p,k]=residue(num,den); %perform partial fraction expansion of H(s)

>>[num,den]=residue(r,p,k); %convert partial fraction back to polynomial form

vectors num and den specify the coefficients of the numerator and denominator polynomials in

descending powers of s. The residues are stored in the column vector r, the corresponding pole

locations in column vector p, and the remainder terms in row vector k.

Practice:

A linear time-invariant (LTI) system is governed by the transfer function H(s) given by

2

3 2

2 3

5 2

s s
H s

s s s 7

Use the residue command to obtain the partial fraction expansion of H(s)

>>%Partial-fraction expansion via MATLAB

>>num=[1 2 3]; %specify numerator of H(s)

>>den=[1 5 2 7]; %specify denominator of H(s)

>>[r,p,k]=residue(num,den) %perform partial fraction expansion

r =

 0.6912

 0.1544 - 0.1645i

 0.1544 + 0.1645i

p =

 -4.8840

 -0.0580 + 1.1958i

 -0.0580 - 1.1958i

k =

 []

 73

0.6912 0.1544 0.1645 0.1544 0.1645

4.8840 0.0580 1.1958 0.0580 1.1958

j j
H s

s s j s j

Multiple poles:

2

num s 1 2
...

den s
m

r r r m
H s

s p s p s p

Practice:

31 2

3 2

8 10

2 11 2 2 2

Bs B B
H s

s ss s s s
3

A

>>num=[8 10]; %specify numerator

>>den=con([1 1],[1 6 12 8]); %specify denominator

>>[r,p,k]=residue(num,den) %perform partial fraction expansion

r =

 -2.0000

 -2.0000

 6.0000

 2.0000

p =

 -2.0000

 -2.0000

 -2.0000

 -1.0000

k =

 []

2 3

2 2 6

2 12 2
H s

s ss s

2

Partial fraction expansion on H(z)

Simple poles

1

1 1 1

num z 1 2
... 1 2 ...

den z 1 1 1 2 1

r r r n
H z k k z

p z p z p n z

 74

where num and den are the numerator and denominator polynomial coefficients, respectively, in

ascending powers of , r and p are column vectors containing the residues and poles,

respectively, k contains the direct terms in a row vector.

1z

Syntax:

>>[r,p,k]=residuez(num,den); %perform partial fraction expansion of H(z)

>>[num,den]=residuez(r,p,k); %convert the partial fraction back to polynomial form

Practice:

A linear time-invariant system is governed by the transfer function H(z) given by

2 1

3 2 1 2

6 37 53 0 6 37 53

10 31 30 1 10 31 30

z z z z z
H z

z z z z z

2 3

3z

>>%Partial fraction expansion of H(z)

>>num=[0 6 -37 53]; %specify numerator of H(z)

>>den=[1 –10 31 –30]; %specify denominator of H(z)

>>[r,p,k]=residuez(num,den); %perform partial fraction expansion of H(z)

r =

 3.0000

 2.0000

 1.0000

p =

 5.0000

 3.0000

 2.0000

k =

 []

1 1

3 2 1

1 5 1 3 1 2
H z

z z 1z

Multiple poles:

If 1p is a multiple pole of order m, then H(z) has terms of the form:

21 1 1
1 1 1

num z 1 2
...

den z 1 1 1
m

r r r m
H z

p z p z p z

 75

Practice:

Use the residuez command to find the partial fraction expansion of H(z).

1 2

1 2

num z 2 3 4

den z 1 3 3

z z
H z

z z z 3

>>num=[2 3 4]; %specify the numerator of H(z)

>>den=[1 3 3 1]; %specify the denominator of H(z)

>>[r,p,k]=residuez(num,den) %perform partial fraction expansion

r =

 4.0000 - 0.0000i

 -5.0001 + 0.0000i

 3.0000 - 0.0000i

p =

 -1.0000

 -1.0000 + 0.0000i

 -1.0000 - 0.0000i

k =

 []

2 31 1 1

4 5 3

1 1 1
H z

z z z

Bode Plots:

If a system has a transfer function H s , its frequency response, H j , is in general

complex, and it’s typically represented in two separate plots, one for its magnitude and the other

for its phase, both as functions of frequency . These two plots together are called the Bode plot

of the system. The command bode produces both the magnitude and the phase responses.

Syntax:

>>bode(sys)

Draws automatically the magnitude and phase plots of a system modeled by the transfer function

H(s), specified by sys. The frequency is on a logarithmic scale, the phase is given in degrees, and

the magnitude is given as the gain in decibels.

 76

>>[mag,phase]=bode(sys,w)

This function returns the magnitude and phase of a system specified in terms of its transfer

function H(s). The magnitude and phase are evaluated at a frequency vector w specified by the

user. To obtain a plot with the magnitude expressed in decibels over a logarithmic frequency axis

use semilogx(w,20*log10(mag)). Similarly, the phase (in degrees) over a logarithmic frequency

axis is obtained via semilogx(w,phase). Finally, if it is desired to have a frequency axis in Hz, use

w/(2*pi) instead of w.

>>[mag,phase,w]=bode(sys);

This function returns the magnitude, phase, and a vector w that contains the values of the

frequency in rad/s where the frequency response has been calculated.

Note: In order to plot the magnitude and phase you need to remove singleton dimensions from

mag and phase. This is done using the squeeze function or reshape function. This is carried out

as follows:

>>[mag, phase]=bode(sys, w);

>>mag=squeeze(mag);

>>phase=squeeze(phase);

>>semilogx(w,20*log10(mag))

Practice:

Consider a linear time-invariant system governed by its transfer function given by

2

num s 78 8

den s 25 625

s
H s

s s

Draw the bode plot.

>>%Bode plot with MATLAB

>>num=78*[1 8]; %specify the numerator of H(s)

>>den=[1 25 625]; %specify the denominator of H(s)

>>H=tf(num,den); %specify the transfer function model

>>[mag,phase,w]=bode(H) %compute magnitude and phase

>>%The output arguments of mag and phase are 3-D arrays. We need to alter the size

>>%of both via the reshape function, before plotting can be made possible.

>>subplot(2,1,1);semilogx(w,reshape(mag,length(w),1));grid

>>ylabel(‘|H(\omega)|’)

>>subplot(2,1,2);semilogx(w,reshape(phase,length(w),1));grid

>>ylabel(‘\theta(\omega)’)

>>xlabel(‘\omega’)

 77

Alternatively, the same results can be obtained as follows:

>>%Bode plot with MATLAB

>>num=78*[1 8]; %specify the numerator of H(s)

>>den=[1 25 625]; %specify the denominator of H(s)

>>H=tf(num,den); %model of the system

>>w=1:0.02:100; %specify a frequency vector

>>[mag,phase]=bode(H,w); %compute magnitude and phase

>>mag=reshape(mag,size(w)); %reshape mag into a column vector

>>phase=reshape(phase,size(w)); %reshape phase into a column vector

>>subplot(2,1,1);semilogx(w,20*log10(mag));grid

>>subplot(2,1,2);semilogx(w,phase);grid

Practice:

1. Simulate the response of the system

2

10 6

5 4

s
H s

s s

to the sinusoidal input 3cos 6 30x t t over the interval 0 t 5 , assuming the system

is in zero state.

2. Find the frequency response H j at =6 rad/s

3. Calculate the steady-state output, ssy t

4. Sketch x(t), y(t) and yss(t) in a single plot

 78

t=[0:0.05:5]';

x=3*cos(6*t+30*pi/180);

y=lsim(num,den,x,t);

[mag,phase]=bode(num,den,6);

yss=3*mag*cos(6*t+(30+phase)*pi/180);

subplot(2,1,1);plot(t,x,t,y,'r',t,yss,'k','LineWidth',2);

set(gca,'XTick',[0:0.5:5])

title('Sinusoidal steady-state response')

xlabel('Time (secs)')

ylabel('Amplitude')

Interconnection of systems:

Systems may be interconnected in various ways to form larger systems. Conversely, one might

break down larger systems into smaller ones to facilitate design and analysis. There are three

major ways in which systems can be interconnected, namely,

Series interconnection (or cascade)

Parallel interconnection

Feedback interconnection (positive feedback or negative feedback)

The MATLAB commands, series, parallel, feedback, and cloop, provide the overall transfer

function of systems that are connected in series, parallel, feedback, and a closed-loop (unity

feedback) system description given an open-loop system, respectively.

Practice:

Two systems are governed by the following transfer functions:

1 22 2

3
,

2 3 5

s s
H s H s

s s s s 1

1. Find the overall transfer function of the cascaded systems

2. Repeat part (1) if the systems are connected in parallel

3. Repeat part (1) for a feedback connection

 79

>>%Systems connected in cascade

>>num1=[1 0]; %specify numerator of system 1

>>den1=[1 2 3]; %specify denominator of system 1

>>sys1=tf(num1,den1); %specify system 1

>>num2=[1 3]; %specify numerator of system 2

>>den2=[1 5 1]; %specify denominator of system 2

>>sys2=tf(num2,den2); %specify system 2

>>sys=series(sys1,sy2) %specify the overall cascaded system

Transfer function:

 s^2 + 3 s

s^4 + 7 s^3 + 14 s^2 + 17 s + 3

>>sys=parallel(sys1,sys2) %specify overall system in parallel

Transfer function:

 2 s^3 + 10 s^2 + 10 s + 9

s^4 + 7 s^3 + 14 s^2 + 17 s + 3

>>sign=-1 %sign=-1 (negative feedback), sign=+1 (positive feedback)

>>sys=feedback(sys1,sys2,sign) %specify model for the closed-loop feedback system

Transfer function:

 s^3 + 5 s^2 + s

s^4 + 7 s^3 + 15 s^2 + 20 s + 3

Practice:

Find the overall transfer function of the system shown below.

 80

+

-

X(s)
Y(s)

2

3 6

s
G s

s s

7

10

s
H s

s

+

>>numg=[1 2];

>>deng=conv([1 3], [1 6]);

>>numh=[1 7];

>>denh=[1 10];

>>[num, den]=feedback(numg,deng,numh,denh);

>>sys=tf(num,den)

Transfer function:

 s^2 + 12 s + 20

s^3 + 20 s^2 + 117 s + 194

Practice:

Find the transfer function of the feedback system depicted below

>numg=[1 2];

 4], [1 6]);

eng);

ransfer function:

6

requency response plots:

2

4 6

s
G s

s s

+

-

X(s) Y(s)
+

>

>>deng=conv([1

>>[num,den]=cloop(numg,d

>>sys=tf(num,den)

T

 s + 2

s^2 + 11 s + 2

F

 81

Continuous-time LTI models

he commands freqs and freqz provide the frequency response in the s-domain and frequency

de

T

response in the z-domain, respectively. Several MATLAB commands are used in conjunction

with frequency plots, namely, abs, angle, and unwrap. The abs and angle extract the magnitu

and phase response, respectively, and unwrap removes jumps of size 2 prior to plotting the

phase.

We begin with the frequency response of continuous-time linear time-invariant systems. The

system function of a continuous-time system can be written in the form:

1

1 1

1

1 1

num s ...

den s ...

m m

m

n n

n

s b s b s b
H s

s a s a s a
 0

0

yntax:S

>[H,w]=freqs(num,den);

iven the transfer function , specified by its numerator and denominator coefficients num

>H=freqs(num,den,w);

his function returns the complex frequency response H of an LTI system specified in terms of

>freqs(num,den);

raws automatically the magnitude (in dB) and phase (in degrees) plots of a system modeled by

ractice:

>

G , H s

and den in vector form. The function freqs returns the complex frequency response H, and a set

of 200 frequencies w (in rad/s) where the frequency response has been calculated.

>

T

its transfer function H(s). The complex frequency response is evaluated at a frequency vector w

specified by the user.

>

D

the transfer function H(s).

P

lot the s-domain frequency response of a system governed by the following transfer function:

P

2

10

11 10
H s

s s

>%The transfer function must be entered as vectors of descending powers of s

e(w *max(mag);

 onse and 3-dB line

>

>>num=10; %specify numerator of H(s)

>>den=[1 11 10]; %specify denominator of H(s)

>>w=-15:0.05:15; %specify a frequency vector

>>H=freqs(num,den,w); %provide the frequency response

>>mag=abs(H); %compute the magnitude response

>>phase=angle(H)*180/pi; %compute the phase response in degrees

>>line_3dB=0.707*ones(siz)) %draw the 3-dB line

>>subplot(2,1,1);plot(w,mag,w,line_3dB,’ro’); %plot magnitude resp

 82

>>subplot(2,1,2);plot(w,phase); %plot the phase response

Discrete-time LTI models:

e shall now consider the frequency response of discrete-time systems, which is also known as

W

the discrete-time Fourier transform (DTFT). In general, the transfer function of a discrete-time

system can be written in the form,

1

1 2 1

1

1 2 1

num z ...

den z ...

nb

nb

na

na

b b z b z
H z

a a z a z

Syntax:

>[H,w]=freqz(num,den,n,’whole’);

his function returns the complex frequency response H, and a frequency vector w (in radians per

>

T

sample) containing the n frequency points spaced around the whole unit circle (0 2). If

n is not specified, it defaults to 512.

>>[H,w]=freqz(num,den,n);

valuates the complex frequency response H at n equally spaced points around the upper half of

E

the unit circle. The frequency vector w has values ranging from 0 to radians per sample.

When you don’t specify the integer n, or you specify it as the empty vector [], the frequency

response is computed using the default value of 512 samples.

>>H=freqz(num,den,w);

eturns the frequency response vector H calculated at the frequencies (in radians per sample)

>freqz(num,den);

eturns the magnitude response (in dB) and the unwrapped phase response (in degrees) against

>[H,f]=freqz(num,den,n, Fs);

eturns the frequency response vector H and the corresponding frequency vector f for the digital

>[H,f]=freqz(num,den,n,’whole’,Fs);

ses n points around the whole unit circle (from 0 to

R

supplied by the vector w. The vector w can have an arbitrary length.

>

R

the normalized frequency from 0 to 1.

>

R

filter whose transfer function is determined by the (real or complex) numerator and denominator

polynomials represented in the vector num and den, respectively. The frequency vector f is

computed in units of Hz. The frequency vector f has values ranging from 0 to Fs/2.

>

U 2 , or from 0 to Fs), to calculate the

 n s Hz.

>H=freqz(num,den,f,Fs);

frequency response. The frequency vector f has length and has values ranging from 0 to F

>

 83

Returns the frequency response vector H calculated at the frequencies (in Hz) supplied in the

vector f. The vector f can have an arbitrary length.

>>[h,f,units]=freqz(num,den,n,’whole’,Fs);

Returns the optional string argument units, specifying the units for the frequency vector f. The

string returned in units is Hz.

Fourier synthesis:

Fourier series are often used to model periodic signals. By truncating the Fourier series, signals

can be approximated accurately enough for applications. The computation and study of Fourier

series is known as harmonic analysis. The process of expanding a periodic signal in Fourier series

is termed analysis, while the process of reconstructing a waveform from its Fourier series is

termed Fourier synthesis. It is well known that around a discontinuity of a function, the partial

sum of the Fourier series exhibit oscillatory behavior (ringing) known as the Gibbs

phenomenon. The Gibbs phenomenon is caused by the difficulty to represent sharp

discontinuities with smooth trigonometric functions.

Practice:

The Fourier series of a pulse waveform is given by

1
2

1

1 2
sin cos

2 n

y t n nt
n

Write a script file to synthesize an approximation of the pulse wave. Experiment with the number

of terms in the partial sum and describe your observations as the number of terms increases. The

error caused by using only a finite number of terms (truncated series) is called the truncation

error.

t=-3*pi:0.02:3*pi; %specify time span

N=input(‘Enter the number of terms: ‘) %input the number of terms

x=zeros(size(t)); %initialization

for n=1:N %time index

x=x+(2/(n*pi))*sin(0.5*n)*cos(n*t); %form the partial sum

end %end of loop

y=x+1/(2*pi); %add dc component

plot(t,y);grid %plot the partial sum

s=int2str(N); %convert N into a string

title([‘Fourier synthesis of a pulse wave: ’,s,” terms’]) %add title to the resulting plot

xlabel(‘time,[s]’) %label the horizontal axis

xlabel(‘Approximation of y(t)’) %label the vertical axis

 84

Practice:

Write a script file to synthesize a square wave whose complex Fourier series coefficients are

given by

2

1
sin

2 2

jn t
T

n n

n

n
x t c e c

N=input(‘Enter the number of terms: ‘);

t=[-1:0.001:1];

n=-N:N;

cn=1/2*sinc(n/2);

B=exp(j*2*pi*t.’*n);

C=ones(length(t),1)*cn;

P=B.*C;

xtrunc=(sum(P.’)).’;

subplot(2,1,1);plot(t,real(xtrunc),’LineWidth’,2);grid

title(‘Fourier synthesis of a squarewave’)

ylabel(‘Approximation of x(t)’)

subplot(2,1,2);h=stem(n,cn,’filled’);grid

set(h,’LineWidth’,2);

title(‘Discrete line spectrum of x(t)’)

ylabel(‘Amplitude spectrum’)

 85

The Discrete Time Fourier Transform:

The discrete time Fourier transform of a sequence x[n] is defined by

j j

n

X e X x x e n

Practice:

1. Generate the following signal

25
1 cos , 0 99

100

n
x n n

2. Compute the DTFT of x[n] for 0 : 0.01: 2*

3. Plot the real part, the imaginary part, the amplitude and phase of X

>>x=1+cos(25*pi/100)*(0:99)); %generate signal

>>w=0:0.01:2*pi; %frequency vector

>>X=exp(-j*w(:)*(0:99))*x(:); %dtft

>>figure(1);

>>plot(w,real(X),w, imag(x)); %plot real and imaginary components

>>xlabel(‘\omega’);

>>title(‘Re(\itX\rm(\omega)), Im(\it\X\rm(\omega))’)

>>figure(2);

>>plot(w,abs(X)); %plot magnitude

>>figure(3);

>>plot(w, angle(X)); %plot phase

 86

The Discrete Fourier Transform (DFT):

In a variety of applications we want to interpret data as signals of different frequencies. One way

to accomplish this task is through the Discrete Fourier Transform (DFT). The DFT is a well-

known tool to analyze the spectral content of a time series. The DFT is a very computationally

intensive procedure. In 1965, Cooley and Tukey published a numerical algorithm to evaluate the

DFT with a significant reduction in the amount of calculation required. The Fast Fourier

Transform, or FFT, is a general name for a class of algorithms that allow the Discrete Fourier

Transform of a sampled signal to be obtained rapidly and efficiently. Keep in mind that the FFT

is not a new transform, but a computationally efficient method to compute the DFT. A common

use of the FFT is to find the frequency components buried in a noisy time domain signal. The fft

command of MATLAB allows the computation of the Discrete Fourier Transform (DFT) of an N

element vector x representing N samples of a discrete time signal. The function ifft defines the

inverse discrete Fourier transform. For any x[n], the value ifft(fft(x)) equals x to within roundoff

errors.

Syntax:

>>X=fft(x); %compute the DFT of x

>>x=ifft(X); %compute the inverse DFT of X

note: For the fastest possible FFTs, you will want to pad your data with enough zeros to make its

length a power of two. The fft function does this automatically if you provide a second argument

specifying the overall length of the FFT as follows:

>>X=fft(x,N); %compute an N-point DFT

The next highest power of 2 greater than or equal to the length of the given sequence x[n] can be

found using the MATLAB command nextpow2.

Practice:

Find the next highest power of 2 of 235-point sequence x[n]

>> N=235; %length of the sequence x[n]

>> NFFT=2^nextpow2(N) %make the length a power of 2

NFFT =

 256

The result of fft is generally an array of complex numbers. The commands abs and angle can be

used to compute the magnitude and angle of the complex values respectively.

For plotting a two-sided transform, the command fftshift will rearrange the output of fft to move

the zero component to the center of the spectrum, as the following code demonstrates.

Practice:

>>x=[1 2 3 4]; %define a vector x

 87

>>y=fftshift(x) %swap the first and second halves of x

y =

 3 4 1 2

Practice:

Find the 4-point DFT of the sequence x[0]=1, x[1]=2, x[2]=3, x[3]=4, and x[n]=0 for all other n.

>>n=0:3; %index

>>xn=[1 2 3 4]; %sequence x[n]

>>Xk=fft(xn) %compute the FFT of x[n]

10.0000

 -2.0000 - 2.0000i

 -2.0000

 -2.0000 + 2.0000i

Practice:

We form a signal containing 40 Hz and 150 Hz frequency components and corrupt it with

gaussian noise having zero mean and unity standard deviation.

1. Sketch the corrupted signal in the time-domain

2. Determine the spectrum of the corrupted signal and sketch it

>>Fs=1000; %specify the sampling frequency

>>t=0:1/Fs:1; %define a time base

>>sig=cos(2*pi*40*t)+cos(2*pi*150*t); %signal component

>>noise=randn(size(sig)); %noise component

>>signal=sig+noise; %corrupted signal

>>subplot(2,1,1);plot(t,signal);grid %plot corrupted signal

>>title(‘Signal in the presence of noise’) %add title

>>spec=fft(signal,512); %compute the spectrum of corrupted signal

>>mag=fftshift(abs(spec)); %center the spectrum around dc

>>f=Fs*(-255:256)/512; %frequency vector

>>subplot(2,1,2);plot(f,mag);grid %plot spectrum

>>title(‘Spectrum of corrupted signal’) %add title

>>xlabel(‘Frequency,[Hz]’) %label the horizontal axis

Note:

The DFT results in an evaluation of the spectrum at evenly spaced frequencies. For an N-sample

record and sampling frequency Fs, the frequency resolution (spacing) is sf F N .

 88

Obviously, it is difficult to identify the frequency components by looking at the original signal in

the time domain. On the other hand, the identification of the spectral components is

straightforward in the frequency domain.

Timing:

The functions tic and toc provide a means of finding the time taken to execute a segment of code.

The statement tic starts the timing and toc gives the elapsed time since the last tic. The timing

will vary depending on the model of computer being used and its current load.

Practice:

>> x=[1 2 3 4 5 6 7 8];

>> tic, fft(x),toc

elapsed_time =

 0.0900

Note: A sampled record is of finite length and is therefore usually a truncated version of the

actual signal. In essence it is obtained by multiplying the signal by a rectangular pulse of height

1 over the time occupied by the record.

Practice:

Obtain the amplitude spectrum of the signal 1 2sin 2 0.06sin 2x t f t f t using 64

samples 125 s apart; apply a Hamming window to the data set.

 89

Ts=0.000125; %sampling interval

F=[1062.5 1625]; %frequency tones of x(t)

t=(0:63)*Ts; %time base

x=sin(2*pi*F(1)*t)+0.06*sin(2*pi*F(2)*t); %signal

wham=hamming(64); %hamming window

xham=wham’.*x; %windowed signal

subplot(2,1,1);stem(t,xham) %plot windowed signal

xlabel(Time (seconds)’); ylabel(‘xham(n)’) %label axes

f=(0:63)/(64*Ts); %frequency vector

subplot(2,1,2); stem(f,abs(fft(xham))); %plot spectrum

xlabel(‘Frequency (Hz)’); ylabel(‘FFTmag’); %label axes

Zero-padding:

Zero padding refers to the operation of extending a sequence of length M to length N>M by

appending N-M zero samples to the given sequence. This operation may be performed on any

sequence x[n], prior to computing its transform with a DFT.

Practice:

>>x=[1 2 3 4 5]; %sequence x[n]

>>xp=[1 2 3 4 5 0 0 0]; %padded sequence

The Discrete-Time Fourier Series(DTFS):

The DTFS is a frequency domain representation for periodic discrete-time sequences.

The built-in function fft may be used to evaluate the DTFS. If x is an N-point vector containing

x[n] for the single period , then the DTFS of x[n] can be computed by 0 n N 1

1

>>X=fft(x)/N

where the N-point vector X contains the DTFS coefficients, X[k] for 0 k N . MATLAB

assumes the summations in the DTFS formula run from 0 to N-1, so the first elements of x and X

correspond to x[0] and X[0], respectively, while the last elements correspond to x[N-1] and X[N-

1]. Similarly, given DTFS coefficients in a vector X, the command ifft may be used to recover

the original sequence x[n].

>>x=ifft(X)*N

returns a vector x that represents one period for the time vector.

Practice:

Determine the DTFS coefficients for the following signal.

3
1 sin ; 24 (period)

12 8
x n n N

>>x=ones(1,24)+sin([0:23]*pi/12+3*pi/8); %specify the sequence x[n]

 90

>>X=fft(x)/24 %compute the DTFS of x[n]

Circular convolution:

Practice:

%--

%Assume x and y are real data signals

%whose length is less than N

%---

N=128; %length of circular convolution

X=fft(x,N); %DFT of x[n]

Y=fft(y,N); %DFT of y[n]

z=real(ifft(X.*Y)); %N-point circular convolution of x[n] and y[n]

%--

DTMF (multi-tone dialing procedure):

Dual-tone-multi-frequency (DTMF) also known as touch-tone is the standard in the

telecommunication systems used in encoding digits for transmission between the customer and

the central office. In the DTMF scheme, a telephone is equipped with a keypad as depicted in

Figure 1. The A, B, C, and D keys are usually not present on a regular telephone keypad. In

DTMF there are 16 distinct tones. Each tone consists of two simultaneous frequencies mixed

together (added amplitudes), for example, pressing ‘1’ will send a tone made of 1209 Hz and 697

Hz to the other end of the line. The frequencies were selected to avoid harmonics (no frequency

is a multiple of another, the difference between any two frequencies does not equal any of the

frequencies, likewise for the sum of two frequencies). At the central office, the telephone switch

decodes the tones. Decoding can be done using a bank of eight bandpass filters, one for each of

the eight possible tones. If two of these tones are detected, it is assumed that the key associated

with both of these tones was pressed. DTMF “Touch” tones are defined in CCITT volume VI.

Figure 1: Touch-Tone Telephone Pad

Telephone tones:

A telephone keypad has 12 buttons, a microphone and a speaker. The phone is connected to the

central office through a single pair of wires. The phone company office supplies –48 volts at 80

ma to power the telephone. When the phone company wants to ring your phone, they generate a

 91

20 Hz, 90 volt RMS signal that pulses on for 2 seconds, then off for 4 seconds. Each time a user

presses a button on their phone, the phone turns on a pair of oscillators. The frequency of these

oscillators change, based on the button you pressed as shown in Figure 1.

Practice:

function [s,t]=tone(test,N)

%-------------------------------------

% freq(Hz) 1209 1336 1477

% 697 1 2 3

% 770 4 5 6

% 852 7 8 9

% 941 * 0 #

%-------------------------------------

%Example: [s,t]=tone('test',200)

Fs=8000; %sampling frequency

dt=1/Fs; %time interval

t=(0:(N-1))*dt; %time base

fr=[697 770 852 941]; %row frequencies

fc=[1209 1336 1477]; %column frequencies

if test=='1',r=1;c=1;

elseif test=='2',r=1;c=2;

elseif test=='3',r=1;c=3;

elseif test=='4',r=2;c=1;

elseif test=='5',r=2;c=2;

elseif test=='6',r=2;c=3;

elseif test=='7',r=3;c=1;

elseif test=='8',r=3;c=2;

elseif test=='9',r=3;c=3;

elseif test=='*',r=4;c=1;

elseif test=='0',r=4;c=2;

elseif test=='#',r=4;c=3;

else disp('test not valid'); return;

end

s=[sin(fr(r)*2*pi*t)+sin(fc(c)*2*pi*t)]/2;

subplot(2,1,1);plot(t,s);grid

title('\itDTMF time signal')

ylabel('\itAmplitude');

spec=fftshift(abs(fft(s,N)));

f=[-N/2: N/2-1]*Fs/N;

subplot(2,1,2);plot(f,spec,'LineWidth',2);grid

title('\itDTMF spectrum')

xlabel('\itFrequency (Hz)')

ylabel('\itMagnitude spectrum')

return

 92

DTMF Decoder:

In this programming exercise we will implement a decoder to indicate which DTMF tone is being

generated. This can be done in a variety of ways. We will use a simple FIR filter bank. The filter

bank consists of seven bandpass filters, each passing only one of the seven possible DTMF

frequencies. When the input to the filter bank is a DTMF signal, the outputs from two of the

bandpass filters would be larger than the rest. If we detect which two are the largest, then we

know the corresponding frequencies. These frequencies are then used to determine the DTMF

code. A good measure of the output levels is the average power of the outputs.

BPF: 697 Hz

BPF: 770 Hz

BPF: 1477 Hz

21

N

21

N

21

N

Telephone

clear all, clc;

fs=8000;

 93

ft=[697 770 852 941 1209 1336 1477];

Nf=50;

N=input(“Enter the value of N: ‘);

T=(N-1)/fs;

disp(‘ Observation time’);

disp(T);

t=[0: (N-1)]/fs;

x=sin(2*pi*t*ft(1)+sin(2*pi*t*ft(6));

for I=1:7

 f1=ft(i)-1;

 f2=ft(i)-1;

 b(i,:)=fir1(Nf,[f1 f2]*2/fs);

 y(i,:)=filter(b(i,:),1,x);

 p(i)=1/N*sum(y(i,:).^2);

end

subplot(2,1,1); bar(ft,p);

subplot(2,1,2); hold on

for i=1:7

 [H,f]=freqz(b(i,:),1,256,fs);

 c=[‘b’,’c’,’m’,’k’,’g’,’y’];

 plot(f,20*log10(abs(H), c(i));

 title(‘Magnitude response of filter bank’)

 xlabel(‘Frequency’)

 ylabel(‘Magnitude’)

end

hold off

 94

Speech Processing:

In this section, we look at some basic speech processing within the MATLAB environment.

Toward this end, we recommend the following minimum hardware:

16-bit sound card

Microphone (for recording), with better than –60 dBm sensitivity

Headphones or a set of loudspeakers

There are various ways to get sound into MATLAB as vectors of data. A “.wav” file produced

by any windows editing/recording utility can be read into a MATLAB array using the wavread

function. To playback a sound as samples in a vector, use the sound function.

Note: The “cool edit 2000” (http://www.syntrillium.com) editing/recording utility can be used to

obtain your own speech. Be sure to avoid clipping. Clipping will occur if you speak too loudly

or hold the microphone too close to your mouth.

Syntax:

>>[y,Fs,bits]=wavread(‘africa.wav’);

Returns a vector y that contains the audio samples (digitized human voice), Fs is the sampling

frequency, and bits is the number of bits used to quantize the samples. This information is all

contained in the header of the .wav file, and wavread strips it out before assigning the audio data

to y. The file africa.wav is a short recording of speech. The range of data values in y should lie

between –1 and 1, with saturation of the sound equipment occurring for values outside this range.

Make sure to use the semi-colon at the end of the statement; the file might have over hundreds of

thousands samples in length.

If you have a sound card, you can listen to the sounds as follows:

>>sound(y,Fs);

This function plays back the sound stored in vector y. The second argument of the sound

command tells MATLAB how fast to send the samples of y to the speakers (Try different values

for Fs if you want to hear the sound played back at different rates). The default value of Fs is

8192 Hz.

Practice:

>>t=440; %signal frequency in Hz

>>Fs=48000; %sampling frequency in Hz

>>tspan=0.4; %signal duration in seconds

>>t=0;1/Fs:tspan; %time base

>>x=sin(2*pi*f*t); grid %signal x(t)

>>sound(x, Fs); %play sound

Practice:

>>f=440; %signal frequency in Hz

>>Fs=48000; %sampling frequency in Hz

 95

>>tspan=0.4; %signal duration in seconds

>>t=0:1/Fs:tspan; %time base

>>x=sign(sin(2*pi*f*t)); %square wave

>>sound(x,Fs); %play sound

Wave (.wav) Files:

The WAVE file format is an uncompressed audio file format that contains samples of an audio

signal. WAVE files take up a lot of memory because of the fact that they are uncompressed. A

WAVE file contains both sampled audio data along with other useful information about the file

itself, such as the sampling rate, etc. Since WAVE files are binary, you cannot just open them up

in a text editor and expect to be able to read it

Practice:

>>N=400;

>>h=ones(N,1);

>>h=h/sum(h);

>>[x,Fs]=wavread(‘*.wav’);

>>y=conv(x,h);

>>soundsc(y,Fs);

Practice:

1. Design a low-pass Butterworth filter with a passband from 0 to 0.3*pi, and a stopband from

0.5*pi to pi. Allow at most 1 dB loss in the passband, and at least 25 dB loss in the stopband.

2. Read the file messy.wav, filter the signal using the designed filter, and play it over the

speaker.

>>[x,Fs]=wavread(‘c:\messy.wav’); %load the wave file

>>[N,Wn]=buttord(0.3,0.5,1,20); %estimate filter order and cutoff frequency

>>[num,den]=butter(N,Wn); %design the Butterworth filter

>>y=filter(num,den,x); %generate a filtered output

>>sound(y,Fs); %play the sound

The spectrogram:

A spectrogram is a visual representation of the frequencies that make up a particular sound signal.

A complex signal such as the voice can be viewed as the sum of simple sinusoidal signals. In a

spectrogram, the horizontal dimension corresponds to time, and the vertical dimension

corresponds to frequency (or pitch). The relative intensity of the sound at any particular time and

frequency is indicated by colors. Each horizontal line on the graph represents a harmonic in the

signal and their relative strengths can be read by changes in color and brightness. Colors

represent a range of signal intensities. Blue represents the lowest level and red represents the

highest level. In MATLAB, we can use the specgram function to display the spectrogram of a

sound signal.

Syntax:

>>[y,f,t]=specgram(x,nfft,Fs, window, noverlap)

 96

where x is the time-varying signal, nfft is the number of samples used in the DFT, Fs is the

sampling rate, window specifies the time window being used for FFT, and the noverlap specifies

the amount of sample overlap. This function returns spectrogram in matrix y, the f and t are

vectors representing frequency and time respectively.

Practice:

Use the specgram command to display the spectrogram of a dual-tone given by

3cos 2 500 7 cos 2 3000x t t t

>>Fsamp=8000; %sampling rate

>>inc=1/Fsamp; %time increment

>>dur=2; %time duration

>>t=0:inc:dur; %time vector

>>x=3*cos(2*pi*500*t)+7*cos(2*pi*3000*t); %dual-tone

>>specgram(x, 256,Fsamp); %spectrogram

Chirp signals:

A chirped sinusoidal signal is a sinewave of increasing frequency over some prescribed period. In

other words, a chirped sinusoid begins at one frequency and smoothly moves to another

frequency over a time interval. Chirp signals have been used in radar development since the

1960’s because of their advantages over single frequency signals.

A typical chirped sinusoidal signal can be written as

2

0cos 2 2c t t f t

where 0f is the initial frequency, t is time, and is a constant.

The instantaneous frequency of the chirp is found by taking the time derivative of the phase:

2

0 0

1
2 2 2

2
i

d
f t t f t

dt
t f

 97

which clearly reflects a linear frequency variation with time. Since the linear variation of the

frequency can produce an audible sound similar to a siren or a bird chirp; the linear-FM signals

are also called “chirp” signals or simply “chirps”

Practice:

Use the following parameters to define a chirp signal:

 Hz (lower frequency) min 200f

 Hz (upper frequency) max 2000f

 Sec (time range) 2T

Specify and 0f to define the signal c t so that it sweeps the specified frequency range.

Solution:

Because the time range for the frequency sweep is 2 seconds, we obtain a system of two

equations and two unknowns,

 Hz 0 0200 2 0 200f f

 Hz/sec 02000 2 2 450f

Thus, the chirped sinusoidal signal is given by

2cos 2 450 2 200c t t t

where the phase is arbitrary.

Fsamp=8000;

inc=1/Fsamp;

dur=2;

t=0:inc:dur;

psi=2*pi*(200*t+450*t.^2);

c=cos(psi);

subplot(2,1,1),specgram(c,256,8000);

sound(c,Fsamp);

 98

MATLAB has a built-in function chirp to generate chirp signals. The command syntax is as

follows:

>>y=chirp(t, f0, t1, f1)

Generates samples of a linear swept-frequency cosine signal y at the time instances defined in

array t, where f0 is the instantaneous frequency at time 0, and f1 is the instantaneous frequency at

time t1. The frequencies f0 and f1 are both expressed in Hertz. If unspecified, f0 is 0, t1 is 1, and

f1 is 100.

Practice:

t=0: 0.001:2 %2 secs at 1 kHz sample rate

y=chirp(t,0,1,150) %start at dc, cross 150 Hz at t=1 sec

specgram(y,256,1e3,256,250); %display the spectrogram

Goertzel Algorithm:

One method of calculating the DFT is the Goertzel algorithm. The computation of the DFT may

be implemented using a first-order complex recursive structure, which consists of one complex

addition and one complex multiply.

Practice:

Fs=8000;

f=[697 770 852 941 1209 1336 1447 1633];

t=[0:4000]’*1/Fs;

x=0.4*sin(2*pi*f(2)*t)+0.4*sin(2*pi*f(7)*t);

subplot(2,1,1); psd(x,[],Fs);

N=length(x);

omega=2*pi*f*(1/Fs);

B=1; x2=[];

for m=1:length(f)

 A=[1, -2*cos(omega(m)), 1];

 v=filter(B,A,x);

 x2(m)=v(N).^2+v(N-1).^2-2*cos(omega(m))*v(N)*v(N-1);

end

subplot(2,1,2); plot(f,x2,f,x2,’o’); xlabel(‘Frequency,(Hz)’); ylabel(‘|X_k|^2’);

title(‘Dual-tone multi-frequency’)

set(gca,’Ylim’,[-3e4,7e5])

 99

Quantization:

Quantization is the process of representing a value with reduced precision. For example, a five

level uniform quantizer maps the input sequence values into five distinct output levels. A finite

number of bits are required to represent the discrete value, as a result this representation lacks full

precision and it is irreversible.

Practice:

Quantize the signal 5 4sinx t t to integer values.

>>t=0:0.001: 5*pi; %time base

>>x=fix(5+4*sin(t)); %quantize signal to integer values

>>plot(t,x, ‘LineWidth’,3); %plot quantized signal

>>xlabel(‘Time’); ylabel(‘Amplitude’); %label axes

>>title(‘Quantized signal’) %add title

>>axis([0 14 0 max(x)+1]) %scale axes

 100

It is possible to adjust the quantization step size by pre-scaling and post-scaling the function

values. The following yields functional values limited to one digit to the right of the decimal

point.

Practice:

>>t=0:0.001:5*pi; %time base

>>x=fix(10*(5+4*sin(t)))/10; %quantized signal

>>plot(t,x); %plot quantized signal

>>xlabel(‘Time’); ylabel(‘Amplitude’) %label axes

>>title(‘Quantized signal’) %add title

In digital communication, the data format is typically limited by the number of binary digits

(bits). Common computer hardware utilizes 8 or 16 bits in the signal value representation. For

example, a signal restricted to 8-bit format could consist of a sequence of integers lying between

–256 and +255. MATLAB for constructing a single cycle of an 8-bit sinusoide at full amplitude

scale might proceed as follows:

>>n=0:1000;

>>x=fix(255*sin(2*pi*n/1000));

>>plot(n,x)

Finally, to produce an audio signal, which is compatible with MATLAB sound function, we must

restrict the signal values to real values lying between –1 and +1 inclusive. The following

 101

MATLAB piece of code plays a quantization of a pure 1 kHz tone 3 seconds in duration,

sampling rate of 8192 Hz.

Practice:

%5-bit quantization

n=0:(3*8192)-1;

y=((2^(5-1))-1)*sin(2*pi*1000/8192*n);

y=fix(y)/(2^(5-1));

sound(y,8192)

Zero-crossings:

Suppose we are given a signal sin 2 2x t t . We shall consider counting the number of

zero-crossings.

Practice:

>>t=0:0.01:2;

>>x=sin(2*pi*2*t);

>>prod=x(1:length(x)-1).*x(2:length(x));

>>crossings=length(find(prod<0))

crossings=

 7

Audio effects:

In this section we shall turn into some audio effects that will prove useful in digital signal

processing. We will briefly cover

Delay

Echo

Reverberation (reverb)

Chorus

Delay:

A delay is one of the simplest effects, but very valuable if used properly. Simply stated, a delay

takes an audio signal, and plays it back after the delay time. The delay time can range from

several milliseconds to several seconds.

Echo effect:

A basic echo effect can be implemented according to the block diagram depicted below:

 102

delay

D
ax[n] y[n]+

The difference equation describing this model is

y n x n ax n D

1 DH z az

Practice:

clear all;

[x, fs,bits]=wavread(‘test.wav’);

a=input(‘Enter the value of attenuation: ‘);

delay=0.3;

D=round(delay*fs); %number of samples in the delay

num=[1 zeros(1,D) a];

den=[1];

x_delay=filter(num,den,x);

y=x+x_delay;

sound(y,fs)

Reverberation:

This is by far the most heavily used effect in music. Reverberation is the result of many

reflections of a sound that take place in a room. A reflected sound wave will arrive a little later

than the direct sound, and is typically little weaker. The series of delayed and attenuated sound

waves is termed reverb.

audio source

listener

Chorus:

 103

Just as a chorus is a group of singers, the chorus effect can make a single instrument sound like

there are actually several instruments being played.

 104

