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Introduction: 

 

Signals are subdivided into two classes, namely, 

 

Deterministic signals 

Random signals 

 

Signals that can be modeled exactly by a mathematical formula are known as deterministic 

signals.  Deterministic signals are not always adequate to model real-world situations. Random 

signals, on the other hand cannot be described by a mathematical equation; they are modeled in 

probabilistic terms.  In this chapter we shall use the power of MATLAB to describe some 

fundamental aspects of random signals. 

 

Random number generation: 

 

Random numbers conforming to particular density functions can be generated via MATLAB. 

MATLAB has two built-in functions to generate pseudo-random numbers, namely rand and 

randn.  The rand function produces pseudo-random numbers uniformly distributed between zero 

and one, and the function randn generates pseudo-random numbers selected from a normal 

distribution with zero mean and unity variance (standard normal).  Both functions have the same 

syntax.  For example, rand(n) returns a n-by-n matrix of random numbers, rand(n,m) returns a n-

by-m matrix with randomly generated entries distributed uniformly between 0 and 1., and rand(1) 

returns a single random number. 

 

Practice: 
 

>>%Generate one thousand uniform pseudo-random numbers 

>>rand(1,1000)    %return a row vector of 1000 entries 

>>%Generate one thousand gaussian pseudo-random numbers 

>>randn(1,1000);   %return a row vector of 1000 entries 

 

In some applications, it is desirable to generate random integers. The following code illustrates 

one possible way of generating 5 uniform pseudo-random integers over the interval (-20,20). 

 

>>x=fix(40*rand(5,1))-20  %generate 5 uniform integers 

 

x = 

 

    18 

   -11 

     4 

    -1 

    15 

 

Randomization: 
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It is a good practice to provide a seed before using the rand command; otherwise you will get the 

same sequence of random numbers every time you restart the computer.  A good way to reseed 

the random number generator is to use the clock, as follows: 

 

>>rand(‘state’, sum(100*clock)); 

 

Histogram construction: 

 

When the probability density function (pdf) is not available, it can be estimated using a 

histogram.  A histogram is constructed by subdividing the interval [a,b] containing a collection 

of data points into sub-intervals known as bins and count for each bin the number of the data 

points that fall within that bin.  The function hist provides the histogram of sample values of a 

random variable. 

 

Syntax: 

 

>>[n,y]=hist(x,N); 

 

The function hist divides the interval [min(x), max(x)] into N bins and yields the output [n,y], 

where n is a vector whose elements are the number of samples in each bin, and y is a vector 

whose elements are the centers of the bins.  When used in this manner, the hist function does not 

produce a graph; instead we use the bar function.  

 

Bar graphs: 

 

Bar graphs are a good way of examining trends (rising or falling) in one or more variables over a 

period of time.  MATLAB bar graphs can be created to plot either vertically or horizontally.  The 

bar function produces a bar graph which for each value of y, there is a bar whose height is 

proportional to n. 

 

 

Practice: 

 

Generate 10000 gaussian distributed pseudo-random numbers, and then plot the histogram. 

 

>>%Generate 10000 gaussian pseudo-random numbers and draws a histogram 

>>x=randn(1,10000);   %generate a random vector 

>>N=30;    %specify the number of bins 

>>[n,y]=hist(x,N);   %y=vector of centers of bins; n=centers of bins 

>>bar(y,n)    %plot histogram using the bar function 

>>xlabel(‘Realization of random variable’) 

>>ylabel(‘Number of occurrences’) 
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Practice: 

 

Find the approximate distribution of two resistors in a parallel connection assuming that they each 

have measured values, which vary uniformly about their nominal values by 5% . 
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Compute 10000 trials and histogram the results. 

 

n=10000; 

r1=rand(n,1)*(10500-9500)+9500; 

r2=rand(n,1)*(5250-4750)+4750; 

r3=r1.*r2./(r1+r2); 

subplot(2,1,1);hist(r3,20) 

title('Histogram of random resistor values in parallel','FontSize',14); 

ylabel('Occurence R1//R2', 'FontSize',14) 

xlabel('Range of R3 values','FontSize',14) 

 

 
 

 

Scatter diagrams (or scattergram) & correlation coefficient: 

 164



 

The scatter diagram is a useful tool for identifying a potential relationship or correlation 

between two variables.  Correlation implies that as one variable changes, the other also changes.  

Sometimes if we know that there is good correlation between two variables, we can use one to 

predict the other.  The first step in determining the presence of a relationship between two 

variables is to plot the scattergram (graph of the observed data). 

The correlation coefficient is a measure of the degree of linear relationship that exists between 

two variables. 

 

Practice: 

 

>>x=rand(100,1);   

>>y=x+rand(100,1); 

>>plot(x,y,’o’,’MarkerSize’,2)  %2-D scatter plot 

>>corrcoef(x,y); 

>>z=randn(100,1); 

>>plot3(x,y,z,’.’);   %3-D scatter plot 

 

 
 

 

Mean, standard deviation, and median: 

 

Many times we wish to characterize the probability density function (pdf) with a few numbers. 

The mean is a measure of the center or most likely value of a distribution.  The variance (or 

standard deviation) is a measure of dispersion (spread), and the median is also a measure of the 

center.  The median is less sensitive to extreme scores (outliers) than the mean.  The MATLAB 

commands mean, std, and median determine the sample mean, standard deviation, and median, 

respectively.  The standard deviation is measured in the same units as the mean and the median. 

 

Practice: 

 

>>x=randn(1,10000);   %generate gaussian numbers 

>>[mean(x); std(x); median(x)]  %compute the mean, standard deviation, and median 

 

ans = 

 

    0.0066 

    1.0036 

    0.0098 
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It is a straightforward matter to simulate from any normal distribution with a specified mean 

value and a specified standard deviation.  In MATLAB one can produce normally distributed 

numbers with mean zero and a standard deviation of unity directly using the function randn.  To 

produce random numbers from a gaussian distribution of mean m and a standard deviation of sd, 

proceed as follows: 

 

>>r=randn;    %gaussian number: mean zero, standard deviation unity 

>>z=m+r*sd;    %gaussian number: mean m, standard deviation sd.  

 

The rand function generates random numbers uniformly distributed from zero to one.  Numbers 

uniform on the interval [0,1] can be transformed to numbers uniform on [a,b] using the following 

transformation: 

 

>>r=rand;    %uniform number in [0,1] 

>>x=(b-a)*r+a;    %uniform number in [a,b] 

 

Gaussian probabilities: 

 

For a gaussian random variable X with mean m and standard deviation s, the cumulative 

distribution function is given by 
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2 2 2
X

x m
F x P X x erf

s
 

where erf is the error function.  MATLAB has a built-in error function erf defined by 

 

2

0

2 x
terf x e dt  

The following results are important when evaluating gaussian probabilities: 
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Practice: 
 

A gaussian voltage has a mean value of 5 and a standard deviation of 4. 

 

1. Find the probability that an observed value of the voltage is greater than zero. 

2. Find the probability that an observed value of the voltage is greater than zero but less than or 

equal to 5. 

 

>>% Answer to part (1) 

>>m=5; s=4; x=0;    %specify the mean, standard deviation, and x 

>>z=(x-m)/(s*sqrt(2));    %define an intermediate variable z 

>>P1=1/2-1/2*erf(z)    %compute P(X>0) 

>>%Answer to part (2)   

>>x1=0; x2=5;     %define the values of x1 and x2 

>>z1=(x1-m)/(s*sqrt(2)); z2=(x2-m)/(s*sqrt(2)); %define two intermediate variables 
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P2=1/2*erf(z2)-1/2*erf(z1);   %compute the probability 0 5P X  

 

White noise: 

 

Uniform white noise: 

 

A uniform white noise is a sequence of independent samples with zero mean.  The rand function 

generates a sequence of uniform pseudo numbers with mean of 0.5 and variance of 1/12.  

Therefore, the average power of (rand-0.5) is 1/12.  A uniform white noise with a specific 

average power P can be generated using 12 rand 0.5P . 

 

Gaussian white noise: 

 

Similarly, the function randn provides a gaussian sequence with zero mean and a variance of 

unity.  Therefore, one can generate a white gaussian noise having an average power P via 

randnP . 

 

Practice: 

 

>>%Signal-to-noise ratio=2 

>>t=[0:512]/512;   %define a time vector 

>>signal=sqrt(2)*cos(2*pi*5*t);  %define a signal sequence (average power=1 W) 

>>noise=sqrt(0.5)*randn(1,length(t)); %define a noise sequence (average power=0.5 W) 

>>sn=signal+noise;   %compute the signal+noise sequence 

>>subplot(2,1,1);plot(t,sn);grid  %plot the signal+noise sequence 

>>%Signal-to-noise ratio=20 

>>signal2=sqrt(20)*cos(2*pi*5*t); %define a signal sequence (average power=10 W) 

>>sn2=signal2+noise;   %computer the signal+noise sequence 

>>subplot((2,1,2);plot(t,sn2);grid %plot the signal+noise sequence 

>>legend(‘snr=20’,’snr=2’);  %add legend to plot 

 

 
 

 

 

 

 

Some useful functions: 
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sort   reorders elements of a vector to ascending order  

sum   computes the summation of a vector x 

max   finds the largest entry of the vector x 

min   finds the smallest entry of the vector x 

randint   generates matrix of uniformly distributed random integers 

norm(x, arg)  computes the norm of a matrix or a vector  

 

note: 

 

The commands max and min return the maximum and minimum values of an array, and with a 

slight change of syntax they will also return the indices of the array at which the maximum and 

minimum occur. 

 

>>[y,k]=max(y)   %y=max; k=index 

>>[y,k]=min(y)   %y=min; k=index 

 

Spinning coins: 

 

When a fair coin is spun, the likelihood of having heads or tails is 0.5.  Since a value returned by 

the function rand is equally likely to be anywhere in the interval [0,1), we can represent heads, 

say, with a value less than 0.5, and tails otherwise. 

 

Practice: 

 

Simulate spinning a fair coin 30 times. 

 

N=input(‘Enter the number of simulations: ‘) 

for k=1:N 

     rand_number=rand; 

 if random_number<0.5 

 fprintf(‘ H  ‘) 

 else 

 fprintf(‘ T ‘) 

 end 

end 

fprintf(‘\n’)  

 

 

 

Practice: 

 

Write a script function that will simulate n throws of a pair of dice 

 

This entails the generation of random integers in the range 1 to 6.  This can be accomplished as 

follows: 

 

>>floor(1+6*rand); 

 

function  r=dice(n) 

%simulate n throws of a pair of dice 

%Input: n, the number of throws 
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%Output: an n-by-2 matrix, each row corresponds to one throw 

%Usage: r=dice(3) 

r=floor(1+6*rand(n,2)); 

%end of dice 

 

ans = 

 

     1     1 

     3     2 

     5     2 

1 4 

 

>>sum(dice(100))/100  %compute average value over 100 throws 

 

 

Practice: 

 

The average information measure of a digital source is defined by 

 

2

1

log   bits
n

k k

k

H P P  

 

where n is the number of possible distinct source messages and  is the probability of sending 

the k-th message.  This average information is often known as the source entropy. 

kP

 

A digital source puts out –1.0 V and 0.0 V levels with a probability of 0.2 each and 3.0 V and 4.0 

V levels with a probability of 0.3 each.  Evaluate the entropy of the source. 

 

>>p=[0.2  0.2  0.3  0.3];   %define the vector of probabilities 

>>H=-sum(p.*log2(p))   %compute the entropy 

 

H = 

 

    1.9710 

 

Practice: 

 

Monte Carlo approximation of . 

 

Consider the following diagram of quarter unit circle inside a unit square.  The ratio of the area of 

the quarter circle to the area of the square is pi/4, so if we pick a point in the square at random, 

the probability of it landing within the circle is pi/4.  This idea provides a simple way of 

approximating pi, by finding a sample proportion of random points falling in the circle and 

multiplying by 4. 
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Write a MATLAB script to estimate the value of pi. 

 

function  estimate=randpi(n) 

s=0; 

for k=1:n 

 if(rand^2+rand^2<=1) 

 s=s+1; 

 end 

end 

estimate=4*(s/n); 

 

The cumsum function: 

 

The cumsum function creates a vector in which each element is the cumulative sum of all the 

elements up to and including the comparable position in the original vector. 

 

Practice: 

 

Let x be a vector of values, sorted in ascending order, and p a vector of the probabilities 

associated with each of the corresponding values. As depicted in table below 

 

x 10 20 30 

p 0.20 0.30 0.50 

 

>>x=[10 20 30]; 

>>p=[0.20 0.30 0.50]; 

>>y=cumsum(p) 

 

y = 

 

    0.2000    0.5000    1.0000 

 

Evaluation of binomial coefficients: 

 

!

! !

n

k

n
C

k n k
 

If this expression is used, the factorials can get very big, causing an overflow.  This can be 

avoided by using the following procedure: 

 

nck=1; 

n=input(‘Enter the value of n: ‘); 

k=input(‘Enter the value of k: ‘); 

for m=1:k 

            nck=nck*(n-m+1)/m; 

end 

disp([‘nck= ‘, num2str(nck)’]) 

 

 

Practice: 

 170



 

The probability that n trials will result exactly in k successes in a Bernoulli trial is given by 

 

1
n kn k

kP X k p p  

 

Write a script file that computes recursively (using odds ratio relation) the binomial probabilities.  

Try plotting the probability mass function (PMF) and the cumulative distribution function. 

 

close all 

clc 

%Evaluate binomial probabilities recursively 

n=input('Enter the number of trials: '); 

p=input('Enter the probability of success: '); 

% q=probability of failure (p=1-q) 

q=1-p; 

y(1)=q^n; 

for i=1:n 

    oddsratio=((n-i+1)/i)*(p/q); 

    y(i+1)=y(i) .* oddsratio; 

end 

k=0:n; 

subplot(2,1,1);h=stem(k,y,'filled');grid 

set(h,'LineWidth',2); 

set(gca,'FontSize',10); 

title('Binomial probabilities') 

ylabel('P(X=k)') 

xlabel('Number of successes [k]') 

mean_value=sum(k.*y) 

z=cumsum(y); 

disp(['     k    '  '    P(X=k)'  '    CDF']) 

disp('---------------------------------') 

disp([k'  y'  z']) 

subplot(2,1,2); 

h=stairs(k,z);grid 

axis([0 n 0 1.2]) 

set(h,'LineWidth',3) 

set(gca,'YTick',0:0.2:1.2) 

set(gca,'XTick',1:n) 

ylabel('Cumulative probability') 

 

 

 

Enter the number of trials: 12 

Enter the probability of success: 0.3 

 

mean_value = 

 

    3.6000 

 

     k        P(X=k)    CDF 
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--------------------------------- 

         0    0.0138    0.0138 

    1.0000    0.0712    0.0850 

    2.0000    0.1678    0.2528 

    3.0000    0.2397    0.4925 

    4.0000    0.2311    0.7237 

    5.0000    0.1585    0.8822 

    6.0000    0.0792    0.9614 

    7.0000    0.0291    0.9905 

    8.0000    0.0078    0.9983 

    9.0000    0.0015    0.9998 

   10.0000    0.0002    1.0000 

   11.0000    0.0000    1.0000 

   12.0000    0.0000    1.0000 

 

Figure below shows the associated cumulative probability distribution.  Note that it is a staircase 

function, reflecting the discrete nature of the outcomes. 

 

 
 

 

Correlation: 

 

The cross-correlation between two signals tells how “identical” the signals are.  If there is 

correlation between the signals, then the signals are more or less dependent on each other.  Auto-

correlation means the cross-correlation of a signal with itself. 

 

Practice: 

 

Determine the auto-correlation of a gaussian noise. 

 

noise=randn(5000,1); 

[acf,lag]=xcorr(noise,noise,1000); 

subplot(2,1,1); plot(lag,acf);grid 

title(‘gaussian noise autocorrelation’) 
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ylabel(‘Rxx(lag)’) 

xlabel(‘lag’) 

 

 
Note: xcorr(x,y, ‘coeff’) is the same as xcorr(x,y) but with the maximum set to 1.0. 

 

Practice: 

 

Determine and plot the autocorrelation functions of the following rectangular functions. 

 

specify time functions; 

,1); 

00)=1; 

1; 

lot(t,y1,t,y2,t,y3,'LineWidth',2);grid 

n of autocorrelation function 

)); 

u,acf1,tau,acf2,tau,acf3,'LineWidth',2);grid 

'R_{xx2}(\tau)','R_{xx3}(\tau)') 

400 600 200 800 100 900
t t t

1 1.01 1.02

y1(t)
y2(t) y3(t)

 

 

%

N=1000; 

x=zeros(N

y1=x; y1(400:6

y2=x; y2(200:800)=1.0

y3=x; y3(100:900)=1.02; 

t=1:length(x); 

subplot(2,1,1);p

title('Time functions') 

xlabel('time (sec)') 

ylabel('y_i(t)') 

%Determinatio

acf1=xcorr(y1); 

acf2=xcorr(y2); 

acf3=xcorr(y3); 

tau=(-(N-1): (N-1

subplot(2,1,2);plot(ta

ylabel('R_{xx}(\tau)') 

legend('R_{xx1}(\tau)',
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xlabel('lag (sec)') 

axis([0 2000 -100 900]) 

 

 
 

ractice:

 

P  

Auto-correlation and cross-correlation functions 

/Fs:1; 

ize(t)); 

ise); 

 

ise; 

 y(t)') 

eff'); 

u,acf);grid 

)') 

-correlation') 

 

%

Fs=1000; 

f=7; 

t=0:1

noise=rand(s

noise=noise-mean(no

x=sin(2*pi*f*t)+0.5*noise;

y=0.6*sin(2*pi*f*(t-0.04))+0.2*no

subplot(2,1,1); plot(t,x,t,y);grid 

xlabel('Time (sec)') 

ylabel('Amplitude') 

title('Signals x(t) and

tau=-1:1/Fs:1; 

acf=xcorr(x,'co

subplot(2,2,3);plot(ta

xlabel('Lag (\tau)') 

ylabel('R_{xx}(\tau

title('\itNormalized auto

ccf=xcorr(x,y,'coeff'); 
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subplot(2,2,4);plot(tau,ccf);grid 

)') 

s-correlation') 

xlabel('Lag (\tau)') 

ylabel('R_{xy}(\tau

title('\itNormalized cros

 

 

 
 

ower spectral density (PSD)

 

 

P  

he power spectral density describes how the power of a time series is distributed across 

Periodogram method 

 method 

he periodogram calculates a straight fft-based PSD, while the Welch method averages several 

ractice:

 

T

frequency.  Different algorithm are used for the estimation of PSD, some of which are: 

 

Welch’s method 

Maximum entropy

 

T

sub-spectra to give a smoother estimate of the PSD. 

 

P  

ind and sketch the PSD of a signal consisting of two tones added to white noise. 

s=1000;      %sample rate 

ise 

 

F

 

F

time=0:1/Fs:4;      %time base 

noise=randn(size(time));    %white gaussian no

signal=sin(2*pi*100*time)+sin(2*pi*300*time)+noise; %signal+noise 
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subplot(2,1,1);pwelch(signal,[],[],[],Fs);   %psd estimate 

subplot(2,1,2);periodogram(signal,[],[],Fs);  %psd estimate 

 

 

 

 
 

ignal-to-Noise Ratio:

 

S  

 the process of information transmission, one of the nasty things that happens to a signal is that 

ue 

ractice:

 

In

it is corrupted by additive noise.  A measure of the extent of corruption is the signal-to-noise 

ration or SNR.  This is the ratio of the mean-square value of the signal to the mean-square val

of the noise, expressed typically in dB. 

 

P  

s=1000; 

 

(2*pi*200*t); 

 of signal is: ',num2str(pwave)]) 

 of noise is: ',num2str(pnoise)]) 

oise)),' dB']) 

 

F

t=0:1/Fs:4;

wave=5*sin

noise=randn(size(wave)); 

pwave=mean(wave.^2); 

disp(['mean-square value

pnoise=mean(noise.^2); 

disp(['mean-square value

disp(['signal-to-noise ratio: ', num2str(10*log10(pwave/pn
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filt=butter(10,0.3); 

output=filter(filt,1,noise); 

;grid 

 

ample output:

subplot(2,1,1);plot(t,noise)

subplot(2,1,2);plot(t,output);grid

 

S  

ean-square value of signal is: 12.4969 

 

m

mean-square value of noise is: 1.0019 

signal-to-noise ratio: 10.9596 dB 
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