
 chapter-6

Introduction:

Signals are subdivided into two classes, namely,

Deterministic signals

Random signals

Signals that can be modeled exactly by a mathematical formula are known as deterministic

signals. Deterministic signals are not always adequate to model real-world situations. Random

signals, on the other hand cannot be described by a mathematical equation; they are modeled in

probabilistic terms. In this chapter we shall use the power of MATLAB to describe some

fundamental aspects of random signals.

Random number generation:

Random numbers conforming to particular density functions can be generated via MATLAB.

MATLAB has two built-in functions to generate pseudo-random numbers, namely rand and

randn. The rand function produces pseudo-random numbers uniformly distributed between zero

and one, and the function randn generates pseudo-random numbers selected from a normal

distribution with zero mean and unity variance (standard normal). Both functions have the same

syntax. For example, rand(n) returns a n-by-n matrix of random numbers, rand(n,m) returns a n-

by-m matrix with randomly generated entries distributed uniformly between 0 and 1., and rand(1)

returns a single random number.

Practice:

>>%Generate one thousand uniform pseudo-random numbers

>>rand(1,1000) %return a row vector of 1000 entries

>>%Generate one thousand gaussian pseudo-random numbers

>>randn(1,1000); %return a row vector of 1000 entries

In some applications, it is desirable to generate random integers. The following code illustrates

one possible way of generating 5 uniform pseudo-random integers over the interval (-20,20).

>>x=fix(40*rand(5,1))-20 %generate 5 uniform integers

x =

 18

 -11

 4

 -1

 15

Randomization:

 162

It is a good practice to provide a seed before using the rand command; otherwise you will get the

same sequence of random numbers every time you restart the computer. A good way to reseed

the random number generator is to use the clock, as follows:

>>rand(‘state’, sum(100*clock));

Histogram construction:

When the probability density function (pdf) is not available, it can be estimated using a

histogram. A histogram is constructed by subdividing the interval [a,b] containing a collection

of data points into sub-intervals known as bins and count for each bin the number of the data

points that fall within that bin. The function hist provides the histogram of sample values of a

random variable.

Syntax:

>>[n,y]=hist(x,N);

The function hist divides the interval [min(x), max(x)] into N bins and yields the output [n,y],

where n is a vector whose elements are the number of samples in each bin, and y is a vector

whose elements are the centers of the bins. When used in this manner, the hist function does not

produce a graph; instead we use the bar function.

Bar graphs:

Bar graphs are a good way of examining trends (rising or falling) in one or more variables over a

period of time. MATLAB bar graphs can be created to plot either vertically or horizontally. The

bar function produces a bar graph which for each value of y, there is a bar whose height is

proportional to n.

Practice:

Generate 10000 gaussian distributed pseudo-random numbers, and then plot the histogram.

>>%Generate 10000 gaussian pseudo-random numbers and draws a histogram

>>x=randn(1,10000); %generate a random vector

>>N=30; %specify the number of bins

>>[n,y]=hist(x,N); %y=vector of centers of bins; n=centers of bins

>>bar(y,n) %plot histogram using the bar function

>>xlabel(‘Realization of random variable’)

>>ylabel(‘Number of occurrences’)

 163

Practice:

Find the approximate distribution of two resistors in a parallel connection assuming that they each

have measured values, which vary uniformly about their nominal values by 5% .

1

2

1 2
1 2

1 2

10

5

//eq

R k

R k

R R
R R R

R R

Compute 10000 trials and histogram the results.

n=10000;

r1=rand(n,1)*(10500-9500)+9500;

r2=rand(n,1)*(5250-4750)+4750;

r3=r1.*r2./(r1+r2);

subplot(2,1,1);hist(r3,20)

title('Histogram of random resistor values in parallel','FontSize',14);

ylabel('Occurence R1//R2', 'FontSize',14)

xlabel('Range of R3 values','FontSize',14)

Scatter diagrams (or scattergram) & correlation coefficient:

 164

The scatter diagram is a useful tool for identifying a potential relationship or correlation

between two variables. Correlation implies that as one variable changes, the other also changes.

Sometimes if we know that there is good correlation between two variables, we can use one to

predict the other. The first step in determining the presence of a relationship between two

variables is to plot the scattergram (graph of the observed data).

The correlation coefficient is a measure of the degree of linear relationship that exists between

two variables.

Practice:

>>x=rand(100,1);

>>y=x+rand(100,1);

>>plot(x,y,’o’,’MarkerSize’,2) %2-D scatter plot

>>corrcoef(x,y);

>>z=randn(100,1);

>>plot3(x,y,z,’.’); %3-D scatter plot

Mean, standard deviation, and median:

Many times we wish to characterize the probability density function (pdf) with a few numbers.

The mean is a measure of the center or most likely value of a distribution. The variance (or

standard deviation) is a measure of dispersion (spread), and the median is also a measure of the

center. The median is less sensitive to extreme scores (outliers) than the mean. The MATLAB

commands mean, std, and median determine the sample mean, standard deviation, and median,

respectively. The standard deviation is measured in the same units as the mean and the median.

Practice:

>>x=randn(1,10000); %generate gaussian numbers

>>[mean(x); std(x); median(x)] %compute the mean, standard deviation, and median

ans =

 0.0066

 1.0036

 0.0098

 165

It is a straightforward matter to simulate from any normal distribution with a specified mean

value and a specified standard deviation. In MATLAB one can produce normally distributed

numbers with mean zero and a standard deviation of unity directly using the function randn. To

produce random numbers from a gaussian distribution of mean m and a standard deviation of sd,

proceed as follows:

>>r=randn; %gaussian number: mean zero, standard deviation unity

>>z=m+r*sd; %gaussian number: mean m, standard deviation sd.

The rand function generates random numbers uniformly distributed from zero to one. Numbers

uniform on the interval [0,1] can be transformed to numbers uniform on [a,b] using the following

transformation:

>>r=rand; %uniform number in [0,1]

>>x=(b-a)*r+a; %uniform number in [a,b]

Gaussian probabilities:

For a gaussian random variable X with mean m and standard deviation s, the cumulative

distribution function is given by

1 1

2 2 2
X

x m
F x P X x erf

s

where erf is the error function. MATLAB has a built-in error function erf defined by

2

0

2 x
terf x e dt

The following results are important when evaluating gaussian probabilities:

2 1
1 2

1 1

2 22 2

x m x
P x X x erf erf

s s

m

1 1
1

2 2 2

x m
P X x P X x erf

s

Practice:

A gaussian voltage has a mean value of 5 and a standard deviation of 4.

1. Find the probability that an observed value of the voltage is greater than zero.

2. Find the probability that an observed value of the voltage is greater than zero but less than or

equal to 5.

>>% Answer to part (1)

>>m=5; s=4; x=0; %specify the mean, standard deviation, and x

>>z=(x-m)/(s*sqrt(2)); %define an intermediate variable z

>>P1=1/2-1/2*erf(z) %compute P(X>0)

>>%Answer to part (2)

>>x1=0; x2=5; %define the values of x1 and x2

>>z1=(x1-m)/(s*sqrt(2)); z2=(x2-m)/(s*sqrt(2)); %define two intermediate variables

 166

P2=1/2*erf(z2)-1/2*erf(z1); %compute the probability 0 5P X

White noise:

Uniform white noise:

A uniform white noise is a sequence of independent samples with zero mean. The rand function

generates a sequence of uniform pseudo numbers with mean of 0.5 and variance of 1/12.

Therefore, the average power of (rand-0.5) is 1/12. A uniform white noise with a specific

average power P can be generated using 12 rand 0.5P .

Gaussian white noise:

Similarly, the function randn provides a gaussian sequence with zero mean and a variance of

unity. Therefore, one can generate a white gaussian noise having an average power P via

randnP .

Practice:

>>%Signal-to-noise ratio=2

>>t=[0:512]/512; %define a time vector

>>signal=sqrt(2)*cos(2*pi*5*t); %define a signal sequence (average power=1 W)

>>noise=sqrt(0.5)*randn(1,length(t)); %define a noise sequence (average power=0.5 W)

>>sn=signal+noise; %compute the signal+noise sequence

>>subplot(2,1,1);plot(t,sn);grid %plot the signal+noise sequence

>>%Signal-to-noise ratio=20

>>signal2=sqrt(20)*cos(2*pi*5*t); %define a signal sequence (average power=10 W)

>>sn2=signal2+noise; %computer the signal+noise sequence

>>subplot((2,1,2);plot(t,sn2);grid %plot the signal+noise sequence

>>legend(‘snr=20’,’snr=2’); %add legend to plot

Some useful functions:

 167

sort reorders elements of a vector to ascending order

sum computes the summation of a vector x

max finds the largest entry of the vector x

min finds the smallest entry of the vector x

randint generates matrix of uniformly distributed random integers

norm(x, arg) computes the norm of a matrix or a vector

note:

The commands max and min return the maximum and minimum values of an array, and with a

slight change of syntax they will also return the indices of the array at which the maximum and

minimum occur.

>>[y,k]=max(y) %y=max; k=index

>>[y,k]=min(y) %y=min; k=index

Spinning coins:

When a fair coin is spun, the likelihood of having heads or tails is 0.5. Since a value returned by

the function rand is equally likely to be anywhere in the interval [0,1), we can represent heads,

say, with a value less than 0.5, and tails otherwise.

Practice:

Simulate spinning a fair coin 30 times.

N=input(‘Enter the number of simulations: ‘)

for k=1:N

 rand_number=rand;

 if random_number<0.5

 fprintf(‘ H ‘)

 else

 fprintf(‘ T ‘)

 end

end

fprintf(‘\n’)

Practice:

Write a script function that will simulate n throws of a pair of dice

This entails the generation of random integers in the range 1 to 6. This can be accomplished as

follows:

>>floor(1+6*rand);

function r=dice(n)

%simulate n throws of a pair of dice

%Input: n, the number of throws

 168

%Output: an n-by-2 matrix, each row corresponds to one throw

%Usage: r=dice(3)

r=floor(1+6*rand(n,2));

%end of dice

ans =

 1 1

 3 2

 5 2

1 4

>>sum(dice(100))/100 %compute average value over 100 throws

Practice:

The average information measure of a digital source is defined by

2

1

log bits
n

k k

k

H P P

where n is the number of possible distinct source messages and is the probability of sending

the k-th message. This average information is often known as the source entropy.

kP

A digital source puts out –1.0 V and 0.0 V levels with a probability of 0.2 each and 3.0 V and 4.0

V levels with a probability of 0.3 each. Evaluate the entropy of the source.

>>p=[0.2 0.2 0.3 0.3]; %define the vector of probabilities

>>H=-sum(p.*log2(p)) %compute the entropy

H =

 1.9710

Practice:

Monte Carlo approximation of .

Consider the following diagram of quarter unit circle inside a unit square. The ratio of the area of

the quarter circle to the area of the square is pi/4, so if we pick a point in the square at random,

the probability of it landing within the circle is pi/4. This idea provides a simple way of

approximating pi, by finding a sample proportion of random points falling in the circle and

multiplying by 4.

 169
0 1

1

Write a MATLAB script to estimate the value of pi.

function estimate=randpi(n)

s=0;

for k=1:n

 if(rand^2+rand^2<=1)

 s=s+1;

 end

end

estimate=4*(s/n);

The cumsum function:

The cumsum function creates a vector in which each element is the cumulative sum of all the

elements up to and including the comparable position in the original vector.

Practice:

Let x be a vector of values, sorted in ascending order, and p a vector of the probabilities

associated with each of the corresponding values. As depicted in table below

x 10 20 30

p 0.20 0.30 0.50

>>x=[10 20 30];

>>p=[0.20 0.30 0.50];

>>y=cumsum(p)

y =

 0.2000 0.5000 1.0000

Evaluation of binomial coefficients:

!

! !

n

k

n
C

k n k

If this expression is used, the factorials can get very big, causing an overflow. This can be

avoided by using the following procedure:

nck=1;

n=input(‘Enter the value of n: ‘);

k=input(‘Enter the value of k: ‘);

for m=1:k

 nck=nck*(n-m+1)/m;

end

disp([‘nck= ‘, num2str(nck)’])

Practice:

 170

The probability that n trials will result exactly in k successes in a Bernoulli trial is given by

1
n kn k

kP X k p p

Write a script file that computes recursively (using odds ratio relation) the binomial probabilities.

Try plotting the probability mass function (PMF) and the cumulative distribution function.

close all

clc

%Evaluate binomial probabilities recursively

n=input('Enter the number of trials: ');

p=input('Enter the probability of success: ');

% q=probability of failure (p=1-q)

q=1-p;

y(1)=q^n;

for i=1:n

 oddsratio=((n-i+1)/i)*(p/q);

 y(i+1)=y(i) .* oddsratio;

end

k=0:n;

subplot(2,1,1);h=stem(k,y,'filled');grid

set(h,'LineWidth',2);

set(gca,'FontSize',10);

title('Binomial probabilities')

ylabel('P(X=k)')

xlabel('Number of successes [k]')

mean_value=sum(k.*y)

z=cumsum(y);

disp([' k ' ' P(X=k)' ' CDF'])

disp('---------------------------------')

disp([k' y' z'])

subplot(2,1,2);

h=stairs(k,z);grid

axis([0 n 0 1.2])

set(h,'LineWidth',3)

set(gca,'YTick',0:0.2:1.2)

set(gca,'XTick',1:n)

ylabel('Cumulative probability')

Enter the number of trials: 12

Enter the probability of success: 0.3

mean_value =

 3.6000

 k P(X=k) CDF

 171

 0 0.0138 0.0138

 1.0000 0.0712 0.0850

 2.0000 0.1678 0.2528

 3.0000 0.2397 0.4925

 4.0000 0.2311 0.7237

 5.0000 0.1585 0.8822

 6.0000 0.0792 0.9614

 7.0000 0.0291 0.9905

 8.0000 0.0078 0.9983

 9.0000 0.0015 0.9998

 10.0000 0.0002 1.0000

 11.0000 0.0000 1.0000

 12.0000 0.0000 1.0000

Figure below shows the associated cumulative probability distribution. Note that it is a staircase

function, reflecting the discrete nature of the outcomes.

Correlation:

The cross-correlation between two signals tells how “identical” the signals are. If there is

correlation between the signals, then the signals are more or less dependent on each other. Auto-

correlation means the cross-correlation of a signal with itself.

Practice:

Determine the auto-correlation of a gaussian noise.

noise=randn(5000,1);

[acf,lag]=xcorr(noise,noise,1000);

subplot(2,1,1); plot(lag,acf);grid

title(‘gaussian noise autocorrelation’)

 172

ylabel(‘Rxx(lag)’)

xlabel(‘lag’)

Note: xcorr(x,y, ‘coeff’) is the same as xcorr(x,y) but with the maximum set to 1.0.

Practice:

Determine and plot the autocorrelation functions of the following rectangular functions.

specify time functions;

,1);

00)=1;

1;

lot(t,y1,t,y2,t,y3,'LineWidth',2);grid

n of autocorrelation function

));

u,acf1,tau,acf2,tau,acf3,'LineWidth',2);grid

'R_{xx2}(\tau)','R_{xx3}(\tau)')

400 600 200 800 100 900
t t t

1 1.01 1.02

y1(t)
y2(t) y3(t)

%

N=1000;

x=zeros(N

y1=x; y1(400:6

y2=x; y2(200:800)=1.0

y3=x; y3(100:900)=1.02;

t=1:length(x);

subplot(2,1,1);p

title('Time functions')

xlabel('time (sec)')

ylabel('y_i(t)')

%Determinatio

acf1=xcorr(y1);

acf2=xcorr(y2);

acf3=xcorr(y3);

tau=(-(N-1): (N-1

subplot(2,1,2);plot(ta

ylabel('R_{xx}(\tau)')

legend('R_{xx1}(\tau)',

 173

xlabel('lag (sec)')

axis([0 2000 -100 900])

ractice:

P

Auto-correlation and cross-correlation functions

/Fs:1;

ize(t));

ise);

ise;

 y(t)')

eff');

u,acf);grid

)')

-correlation')

%

Fs=1000;

f=7;

t=0:1

noise=rand(s

noise=noise-mean(no

x=sin(2*pi*f*t)+0.5*noise;

y=0.6*sin(2*pi*f*(t-0.04))+0.2*no

subplot(2,1,1); plot(t,x,t,y);grid

xlabel('Time (sec)')

ylabel('Amplitude')

title('Signals x(t) and

tau=-1:1/Fs:1;

acf=xcorr(x,'co

subplot(2,2,3);plot(ta

xlabel('Lag (\tau)')

ylabel('R_{xx}(\tau

title('\itNormalized auto

ccf=xcorr(x,y,'coeff');

 174

subplot(2,2,4);plot(tau,ccf);grid

)')

s-correlation')

xlabel('Lag (\tau)')

ylabel('R_{xy}(\tau

title('\itNormalized cros

ower spectral density (PSD)

P

he power spectral density describes how the power of a time series is distributed across

Periodogram method

 method

he periodogram calculates a straight fft-based PSD, while the Welch method averages several

ractice:

T

frequency. Different algorithm are used for the estimation of PSD, some of which are:

Welch’s method

Maximum entropy

T

sub-spectra to give a smoother estimate of the PSD.

P

ind and sketch the PSD of a signal consisting of two tones added to white noise.

s=1000; %sample rate

ise

F

F

time=0:1/Fs:4; %time base

noise=randn(size(time)); %white gaussian no

signal=sin(2*pi*100*time)+sin(2*pi*300*time)+noise; %signal+noise

 175

subplot(2,1,1);pwelch(signal,[],[],[],Fs); %psd estimate

subplot(2,1,2);periodogram(signal,[],[],Fs); %psd estimate

ignal-to-Noise Ratio:

S

 the process of information transmission, one of the nasty things that happens to a signal is that

ue

ractice:

In

it is corrupted by additive noise. A measure of the extent of corruption is the signal-to-noise

ration or SNR. This is the ratio of the mean-square value of the signal to the mean-square val

of the noise, expressed typically in dB.

P

s=1000;

(2*pi*200*t);

 of signal is: ',num2str(pwave)])

 of noise is: ',num2str(pnoise)])

oise)),' dB'])

F

t=0:1/Fs:4;

wave=5*sin

noise=randn(size(wave));

pwave=mean(wave.^2);

disp(['mean-square value

pnoise=mean(noise.^2);

disp(['mean-square value

disp(['signal-to-noise ratio: ', num2str(10*log10(pwave/pn

 176

filt=butter(10,0.3);

output=filter(filt,1,noise);

;grid

ample output:

subplot(2,1,1);plot(t,noise)

subplot(2,1,2);plot(t,output);grid

S

ean-square value of signal is: 12.4969

m

mean-square value of noise is: 1.0019

signal-to-noise ratio: 10.9596 dB

 177

